53
Views
0
CrossRef citations to date
0
Altmetric
Lens and Refractive Surgery

CircMAP3K4 Suppresses H2O2-Induced Human Lens Epithelial Cell Injury by miR-630/ERCC6 Axis in Age-Related Cataract

, , &
Pages 487-495 | Received 01 Aug 2023, Accepted 20 Dec 2023, Published online: 28 Dec 2023

References

  • Dave A, Craig JE, Alamein M, Skrzypiec K, Beltz J, Pfaff A, Burdon KP, Ercal N, de Iongh RU, Sharma S. Genotype, Age, Genetic Background, and Sex Influence Epha2-Related Cataract Development in Mice. Invest Ophthalmol Vis Sci. 2021;62(12):3. doi: 10.1167/iovs.62.12.3.
  • Cedrone C, Culasso F, Cesareo M, Mancino R, Ricci F, Cupo G, Cerulli L. Prevalence and incidence of age-related cataract in a population sample from Priverno, Italy. Ophthalmic Epidemiol. 1999;6(2):95–103. doi: 10.1076/opep.6.2.95.1562.
  • Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(12):e1221–e1234. doi: 10.1016/s2214-109x(17)30393-5.
  • Khairallah M, Kahloun R, Bourne R, Limburg H, Flaxman SR, Jonas JB, Keeffe J, Leasher J, Naidoo K, Pesudovs K, et al. Number of people blind or visually impaired by cataract worldwide and in world regions, 1990 to 2010. Invest Ophthalmol Vis Sci. 2015;56(11):6762–6769. doi: 10.1167/iovs.15-17201.
  • Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T, Shu Y. CircRNAs in cancer metabolism: a review. J Hematol Oncol. 2019;12(1):90. doi: 10.1186/s13045-019-0776-8.
  • Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–691. doi: 10.1038/s41576-019-0158-7.
  • Wu J, Qi X, Liu L, Hu X, Liu J, Yang J, Yang J, Lu L, Zhang Z, Ma S, et al. Emerging epigenetic regulation of circular RNAs in human cancer. Mol Ther Nucleic Acids. 2019;16(:589–596. doi: 10.1016/j.omtn.2019.04.011.
  • Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA, Marti A. Noncoding RNAs, cytokines, and inflammation-related diseases. Faseb J. 2015;29(9):3595–3611. doi: 10.1096/fj.14-260323.
  • Xue C, Li G, Zheng Q, Gu X, Bao Z, Lu J, Li L. The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer. 2022;21(1):108. doi: 10.1186/s12943-022-01582-0.
  • Ju J, Song YN, Chen XZ, Wang T, Liu CY, Wang K. circRNA is a potential target for cardiovascular diseases treatment. Mol Cell Biochem. 2022;477(2):417–430. doi: 10.1007/s11010-021-04286-z.
  • Mehta SL, Dempsey RJ, Vemuganti R. Role of circular RNAs in brain development and CNS diseases. Prog Neurobiol. 2020;186(:101746. doi: 10.1016/j.pneurobio.2020.101746.
  • Zhang C, Hu J, Yu Y. CircRNA is a rising star in researches of ocular diseases. Front Cell Dev Biol. 2020;8(:850. doi: 10.3389/fcell.2020.00850.
  • Duan JL, Chen W, Xie JJ, Zhang ML, Nie RC, Liang H, Mei J, Han K, Xiang ZC, Wang FW, et al. A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol Cancer. 2022;21(1):93. doi: 10.1186/s12943-022-01537-5.
  • Du R, Wu N, Bai Y, Tang L, Li L. circMAP3K4 regulates insulin resistance in trophoblast cells during gestational diabetes mellitus by modulating the miR-6795-5p/PTPN1 axis. J Transl Med. 2022;20(1):180. doi: 10.1186/s12967-022-03386-8.
  • Ma Y, Liu Y, Shu B, Yang J, Lv L, Zhou L, Wang L, Shi Z. CircMAP3K4 protects human lens epithelial cells from H(2)O(2)-induced dysfunction by targeting miR-193a-3p/PLCD3 axis in age-related cataract. Cell Cycle. 2023;22(3):303–315. doi: 10.1080/15384101.2022.2114587.
  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–388. doi: 10.1038/nature11993.
  • Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–358. doi: 10.1016/j.cell.2011.07.014.
  • Tu Y, Xie L, Chen L, Yuan Y, Qin B, Wang K, Zhu Q, Ji N, Zhu M, Guan H. Long non-coding RNA MEG3 promotes cataractogenesis by upregulating TP53INP1 expression in age-related cataract. Exp Eye Res. 2020;199:108185. doi: 10.1016/j.exer.2020.108185.
  • Qi T, Jing R, Ma B, Hu C, Wen C, Shao Y, Pei C. The E3 ligase RNF157 inhibits lens epithelial cell apoptosis by negatively regulating p53 in age-related cataracts. Invest Ophthalmol Vis Sci. 2022;63(4):11. doi: 10.1167/iovs.63.4.11.
  • Liu X, Liu B, Zhou M, Fan F, Yu M, Gao C, Lu Y, Luo Y. Circular RNA HIPK3 regulates human lens epithelial cells proliferation and apoptosis by targeting the miR-193a/CRYAA axis. Biochem Biophys Res Commun. 2018;503(4):2277–2285. doi: 10.1016/j.bbrc.2018.06.149.
  • He J, Xie P, Ouyang J. Circ_0122396 protects human lens epithelial cells from hydrogen peroxide-induced injury by binding to miR-15a-5p to stimulate FGF1 expression. Curr Eye Res. 2022;47(2):246–255. doi: 10.1080/02713683.2021.1978100.
  • Wu B, Sun Y, Hou J. CircMED12L protects against hydrogen peroxide-induced apoptotic and oxidative injury in human lens epithelial cells by miR-34a-5p/ALCAM axis. Curr Eye Res. 2022;47(12):1631–1640. doi: 10.1080/02713683.2022.2134427.
  • Kumar S, Vijayan M, Bhatti JS, Reddy PH. MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci. 2017;146(:47–94. doi: 10.1016/bs.pmbts.2016.12.013.
  • Qin Y, Zhao J, Min X, Wang M, Luo W, Wu D, Yan Q, Li J, Wu X, Zhang J. MicroRNA-125b inhibits lens epithelial cell apoptosis by targeting p53 in age-related cataract. Biochim Biophys Acta. 2014;1842(12 Pt A):2439–2447. doi: 10.1016/j.bbadis.2014.10.002.
  • Zhang K, Yin Y, Pei C, Wu C. MicroRNA-124 regulates lens epithelial cell apoptosis by affecting Fas alternative splicing by targeting polypyrimidine tract-binding protein in age-related cataract. Clin Exp Ophthalmol. 2021;49(6):591–605. doi: 10.1111/ceo.13946.
  • Wang S, Guo C, Yu M, Ning X, Yan B, Zhao J, Yang A, Yan H. Identification of H(2)O(2) induced oxidative stress associated microRNAs in HLE-B3 cells and their clinical relevance to the progression of age-related nuclear cataract. BMC Ophthalmol. 2018;18(1):93. doi: 10.1186/s12886-018-0766-6.
  • Takahashi TS, Sato Y, Yamagata A, Goto-Ito S, Saijo M, Fukai S. Structural basis of ubiquitin recognition by the winged-helix domain of Cockayne syndrome group B protein. Nucleic Acids Res. 2019;47(7):3784–3794. doi: 10.1093/nar/gkz081.
  • Cao Y, Li P, Zhang G, Kang L, Zhou T, Wu J, Wang Y, Wang Y, Chen X, Guan H. MicroRNA Let-7c-5p-mediated regulation of ERCC6 disrupts autophagic flux in age-related cataract via the binding to VCP. Curr Eye Res. 2021;46(9):1353–1362. doi: 10.1080/02713683.2021.1900273.
  • Wang Y, Li F, Zhang G, Kang L, Guan H. Ultraviolet-B induces ERCC6 repression in lens epithelium cells of age-related nuclear cataract through coordinated DNA hypermethylation and histone deacetylation. Clin Epigenetics. 2016;8(1):62. doi: 10.1186/s13148-016-0229-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.