88
Views
0
CrossRef citations to date
0
Altmetric
Lens and Refractive Surgery

Reduction of ETV1 is Identified as a Prominent Feature of Age-Related Cataract

, , , , &
Pages 496-504 | Received 25 Dec 2022, Accepted 01 Jan 2024, Published online: 10 Jan 2024

References

  • Hashemi H, Pakzad R, Yekta A, Aghamirsalim M, Pakbin M, Ramin S, Khabazkhoob M. Global and regional prevalence of age-related cataract: a comprehensive systematic review and meta-analysis. Eye (Lond). 2020;34(8):1357–1370. doi:10.1038/s41433-020-0806-3.
  • Kane AE, Sinclair DA. Epigenetic changes during aging and their reprogramming potential. Crit Rev Biochem Mol Biol. 2019;54(1):61–83. doi:10.1080/10409238.2019.1570075.
  • Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression. Science. 2003;301(5634):798–802. doi:10.1126/science.1086887.
  • Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001;70(1):81–120. doi:10.1146/annurev.biochem.70.1.81.
  • Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13(5):343–357. doi:10.1038/nrg3173.
  • Rossetto D, Avvakumov N, Côté J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics. 2012;7(10):1098–1108. doi:10.4161/epi.21975.
  • Kschonsak M, Haering CH. Shaping mitotic chromosomes: from classical concepts to molecular mechanisms. Bioessays. 2015;37(7):755–766. doi:10.1002/bies.201500020.
  • Gates LA, Shi J, Rohira AD, Feng Q, Zhu B, Bedford MT, Sagum CA, Jung SY, Qin J, Tsai MJ, et al. Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation. J Biol Chem. 2017;292(35):14456–14472. doi:10.1074/jbc.M117.802074.
  • Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H, Tora L. H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics. 2012;13(1):424. doi:10.1186/1471-2164-13-424.
  • Yang Y, Zhao T, Li Z, Qian W, Peng J, Wei L, Yuan D, Li Y, Xia Q, Cheng D. Histone H3K27 methylation-mediated repression of Hairy regulates insect developmental transition by modulating ecdysone biosynthesis. Proc Natl Acad Sci U S A. 2021;118(35):e2101442118.
  • Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007;316(5830):1497–1502. doi:10.1126/science.1141319.
  • Song L, Crawford GE. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc. 2010;2010(2):pdb prot5384. doi:10.1101/pdb.prot5384.
  • Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10(12):1213–1218. doi:10.1038/nmeth.2688.
  • Aldiri I, Xu B, Wang L, Chen X, Hiler D, Griffiths L, Valentine M, Shirinifard A, Thiagarajan S, Sablauer A, et al. The dynamic epigenetic landscape of the retina during development, reprogramming, and tumorigenesis. Neuron. 2017;94(3):550–568 e10. and doi:10.1016/j.neuron.2017.04.022.
  • Norrie JL, Lupo MS, Xu B, Al Diri I, Valentine M, Putnam D, Griffiths L, Zhang J, Johnson D, Easton J, et al. Nucleome dynamics during retinal development. Neuron. 2019;104(3):512–528 e11. doi:10.1016/j.neuron.2019.08.002.
  • Zheng X, Yue S, Chen H, Weber B, Jia J, Zheng Y. Low-cell-number epigenome profiling aids the study of lens aging and hematopoiesis. Cell Rep. 2015;13(7):1505–1518. doi:10.1016/j.celrep.2015.10.004.
  • Sun J, Zhao Y, McGreal R, Cohen-Tayar Y, Rockowitz S, Wilczek C, Ashery-Padan R, Shechter D, Zheng D, Cvekl A. Pax6 associates with H3K4-specific histone methyltransferases Mll1, Mll2, and Set1a and regulates H3K4 methylation at promoters and enhancers. Epigenetics Chromatin. 2016;9(1):37. doi:10.1186/s13072-016-0087-z.
  • Zhu Q, Belden WJ. Molecular regulation of circadian chromatin. J Mol Biol. 2020;432(12):3466–3482. doi:10.1016/j.jmb.2020.01.009.
  • Iwagawa T, Watanabe S. Molecular mechanisms of H3K27me3 and H3K4me3 in retinal development. Neurosci Res. 2019;138:43–48. doi:10.1016/j.neures.2018.09.010.
  • Igolkina AA, Zinkevich A, Karandasheva KO, Popov AA, Selifanova MV, Nikolaeva D, Tkachev V, Penzar D, Nikitin DM, Buzdin A. H3K4me3, H3K9ac, H3K27ac, H3K27me3 and H3K9me3 histone tags suggest distinct regulatory evolution of open and condensed chromatin landmarks. Cells. 2019;8(9):1034. doi:10.3390/cells8091034.
  • Chen Z, Zhang Y. Maternal H3K27me3-dependent autosomal and X chromosome imprinting. Nat Rev Genet. 2020;21(9):555–571. doi:10.1038/s41576-020-0245-9.
  • Li D, Han X, Zhao Z, Lu Y, Yang J. Functional analysis of deleterious EPHA2 SNPs in lens epithelial cells. Mol Vis. 2021;27:403–414.
  • Li D, Huang C, Han X, Sun J. Integrated transcriptome analysis of iris tissues in experimental autoimmune uveitis. Front Genet. 2022;13:867492. doi:10.3389/fgene.2022.867492.
  • Feng J, Liu T, Qin B, Zhang Y, Liu XS. Identifying ChIP-seq enrichment using MACS. Nat Protoc. 2012;7(9):1728–1740. doi:10.1038/nprot.2012.101.
  • Ibaraki N, Chen SC, Lin LR, Okamoto H, Pipas JM, Reddy VN. Human lens epithelial cell line. Exp Eye Res. 1998;67(5):577–585. doi:10.1006/exer.1998.0551.
  • Jun G, Guo H, Klein BE, Klein R, Wang JJ, Mitchell P, Miao H, Lee KE, Joshi T, Buck M, et al. EPHA2 is associated with age-related cortical cataract in mice and humans. PLoS Genet. 2009;5(7):e1000584. doi:10.1371/journal.pgen.1000584.
  • Shi Y, De Maria A, Bennett T, Shiels A, Bassnett S. A role for epha2 in cell migration and refractive organization of the ocular lens. Invest Ophthalmol Vis Sci. 2012;53(2):551–559. doi:10.1167/iovs.11-8568.
  • Park JE, Son AI, Hua R, Wang L, Zhang X, Zhou R. Human cataract mutations in EPHA2 SAM domain alter receptor stability and function. PLoS One. 2012;7(5):e36564. doi:10.1371/journal.pone.0036564.
  • Beebe DC, Holekamp NM, Shui YB. Oxidative damage and the prevention of age-related cataracts. Ophthalmic Res. 2010;44(3):155–165. doi:10.1159/000316481.
  • Robinson ML. An essential role for FGF receptor signaling in lens development. Semin Cell Dev Biol. 2006;17(6):726–740. doi:10.1016/j.semcdb.2006.10.002.
  • McAvoy JW, Chamberlain CG. Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentration. Development. 1989;107(2):221–228. doi:10.1242/dev.107.2.221.
  • Lovicu FJ, McAvoy JW. FGF-induced lens cell proliferation and differentiation is dependent on MAPK (ERK1/2) signalling. Development. 2001;128(24):5075–5084. doi:10.1242/dev.128.24.5075.
  • Garcia CM, Yu K, Zhao H, Ashery-Padan R, Ornitz DM, Robinson ML, Beebe DC. Signaling through FGF receptor-2 is required for lens cell survival and for withdrawal from the cell cycle during lens fiber cell differentiation. Dev Dyn. 2005;233(2):516–527. doi:10.1002/dvdy.20356.
  • Chow RL, Roux GD, Roghani M, Palmer MA, Rifkin DB, Moscatelli DA, Lang RA. FGF suppresses apoptosis and induces differentiation of fibre cells in the mouse lens. Development. 1995;121(12):4383–4393. doi:10.1242/dev.121.12.4383.
  • Collins TN, Mao Y, Li H, Bouaziz M, Hong A, Feng GS, Wang F, Quilliam LA, Chen L, Park T, et al. Crk proteins transduce FGF signaling to promote lens fiber cell elongation. Elife. 2018;7:e32586. doi:10.7554/eLife.32586.
  • Garg A, Hannan A, Wang Q, Makrides N, Zhong J, Li H, Yoon S, Mao Y, Zhang X. Etv transcription factors functionally diverge from their upstream FGF signaling in lens development. Elife. 2020;9:e51915. doi:10.7554/eLife.51915.
  • Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–648. doi:10.1126/science.1117679.
  • Jané-Valbuena J, Widlund HR, Perner S, Johnson LA, Dibner AC, Lin WM, Baker AC, Nazarian RM, Vijayendran KG, Sellers WR, et al. An oncogenic role for ETV1 in melanoma. Cancer Res. 2010;70(5):2075–2084. doi:10.1158/0008-5472.CAN-09-3092.
  • Jeon IS, Davis JN, Braun BS, Sublett JE, Roussel MF, Denny CT, Shapiro DN. A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene. 1995;10(6):1229–1234.
  • Oh S, Song H, Freeman WM, Shin S, Janknecht R. Cooperation between ETS transcription factor ETV1 and histone demethylase JMJD1A in colorectal cancer. Int J Oncol. 2020;57(6):1319–1332. doi:10.3892/ijo.2020.5133.
  • Heeg S, Das KK, Reichert M, Bakir B, Takano S, Caspers J, Aiello NM, Wu K, Neesse A, Maitra A, et al. ETS-transcription factor ETV1 regulates stromal expansion and metastasis in pancreatic cancer. Gastroenterology. 2016;151(3):540–553 e14. doi:10.1053/j.gastro.2016.06.005.
  • Hayashi Y, Bardsley MR, Toyomasu Y, Milosavljevic S, Gajdos GB, Choi KM, Reid-Lombardo KM, Kendrick ML, Bingener-Casey J, Tang CM, et al. Platelet-derived growth factor receptor-alpha regulates proliferation of gastrointestinal stromal tumor cells with mutations in KIT by stabilizing ETV1. Gastroenterology. 2015;149(2):420–432 e16. doi:10.1053/j.gastro.2015.04.006.
  • Shekhar A, Lin X, Liu FY, Zhang J, Mo H, Bastarache L, Denny JC, Cox NJ, Delmar M, Roden DM, et al. Transcription factor ETV1 is essential for rapid conduction in the heart. J Clin Invest. 2016;126(12):4444–4459. doi:10.1172/JCI87968.
  • Tenney AP, Livet J, Belton T, Prochazkova M, Pearson EM, Whitman MC, Kulkarni AB, Engle EC, Henderson CE. Etv1 controls the establishment of non-overlapping motor innervation of neighboring facial muscles during development. Cell Rep. 2019;29(2):437–452 e4. doi:10.1016/j.celrep.2019.08.078.
  • Qi T, Qu Q, Li G, Wang J, Zhu H, Yang Z, Sun Y, Lu Q, Qu J. Function and regulation of the PEA3 subfamily of ETS transcription factors in cancer. Am J Cancer Res. 2020;10:3083–3105.
  • Willardsen M, Hutcheson DA, Moore KB, Vetter ML. The ETS transcription factor Etv1 mediates FGF signaling to initiate proneural gene expression during Xenopus laevis retinal development. Mech Dev. 2014;131:57–67. doi:10.1016/j.mod.2013.10.003.
  • Tabibzadeh S. Signaling pathways and effectors of aging. Front Biosci (Landmark Ed)). 2021;26(1):50–96. doi:10.2741/4889.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.