1,610
Views
53
CrossRef citations to date
0
Altmetric
Review Article

Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: a mini review

ORCID Icon, , , &
Pages 174-193 | Received 05 May 2019, Accepted 30 Oct 2019, Published online: 11 Nov 2019

References

  • Cheng P, Wang Y, Liu T, et al. Biofilm attached cultivation of chlorella pyrenoidosa is a developed system for swine wastewater treatment and lipid production. Front Plant Sci. 2017;8:1594–1594.
  • Lee K, Eisterhold ML, Rindi F, et al. Isolation and screening of microalgae from natural habitats in the midwestern United States of america for biomass and biodiesel sources. J Nat Sci Biol Med. 2014;5(2):333–339.
  • Group MTR: Microalgae Culture Collection 1984–1985. Solar Energy Research Institute 1984, SERI/SP-231–2486:UC Category: 61a.
  • Cho D-H, Choi J-W, Kang Z, et al. Microalgal diversity fosters stable biomass productivity in open ponds treating wastewater. Sci Rep. 2017;7(1):1979–1979.
  • Ndikubwimana T, Zeng X, Murwanashyaka T, et al. Harvesting of freshwater microalgae with microbial bioflocculant: a pilot-scale study. Biotechnol Biofuels. 2016;9:47–47.
  • Falkowski PG. Evolution. tracing oxygen's imprint on earth's metabolic evolution. Science. 2006;311(5768):1724–1725.
  • Sunil Kumar M, Buddolla V. Chapter 12 - future prospects of biodiesel production by microalgae: A short review. In: Buddolla V, editor. Recent Developments in Applied Microbiology and Biochemistry. South Korea: Academic Press; 2019. p. 161–166.
  • Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol. 2003;57:395–418.
  • Hayyan M, Hashim MA, AlNashef IM. Superoxide Ion: generation and chemical implications. Chem Rev. 2016;116(5):3029–3085.
  • Wang S, Wang Z. Co-exposure of freshwater microalgae to tetrabromobisphenol A and sulfadiazine: oxidative stress biomarker responses and joint toxicity prediction. Bull Environ Contam Toxicol. 2017;99(4):438–444.
  • Cembella AD, Quilliam MA, Lewis NI, et al. The toxigenic marine dinoflagellate alexandrium tamarense as the probable cause of mortality of caged salmon in nova scotia. Harmful Algae. 2002;1(3):313–325.
  • Legrand C, Rengefors K, Fistarol GO, et al. Allelopathy in phytoplankton - biochemical, ecological and evolutionary aspects. Phycologia. 2003;42(4):406–419.
  • Driscoll WW, Espinosa NJ, Eldakar OT, et al. Allelopathy as an emergent, exploitable public good in the bloom-forming microalga prymnesium parvum. Evolution. 2013;67(6):1582–1590.
  • Lesser MP. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol. 2006;68(1):253–278.
  • Davies MJ. Protein oxidation and peroxidation. Biochem J. 2016;473(7):805–825.
  • Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol. 2004;142(2):231–255.
  • Diaz JM, Plummer S. Production of extracellular reactive oxygen species by phytoplankton: past and future directions. J Plankton Res. 2018;40(6):655–666.
  • Skjånes K, Rebours C, Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol. 2013;33(2):172–215.
  • Johnson TJ, Sams RL, Burton SD, et al. Absolute integrated intensities of vapor-phase hydrogen peroxide (H2O2) in the mid-infrared at atmospheric pressure. Anal Bioanal Chem. 2009;395(2):377–386.
  • Hunt JM, Wisherd MP, Bonham LC. Infrared absorption spectra of minerals and other inorganic compounds. Anal Chem. 1950;22(12):1478–1497.
  • Chen JH, Xu JW, Shing CX. Decomposition rate of hydrogen peroxide bleaching agents under various chemical and physical conditions. J Prosthet Dent. 1993;69(1):46–48.
  • Goroncy-Bermes P, Gerresheim S. [Effectiveness of peroxide solutions against microorganisms in biofilms]. Zentralbl Hyg Umweltmed. International Journal of Hygiene and Environmental Medicine. 1996;198(5):473–477.
  • Wazawa T, Matsuoka A, Tajima G, et al. Hydrogen peroxide plays a key role in the oxidation reaction of myoglobin by molecular oxygen. A computer simulation. Biophys J. 1992;63(2):544–550.
  • Buettner GR. Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anticancer Agents Med Chem. 2011;11(4):341–346.
  • Ingraham LL, Meyer DL. Superoxide Ion. In: Ingraham LL, Meyer DL, editor. Biochemistry of Dioxygen. Boston, MA: Springer US; 1985. p. 45–73.
  • Mutoh H, Hiraishi H, Ota S, et al. Sugimoto T: relationships between metal ions and oxygen free radicals in ethanol-induced damage to cultured rat gastric mucosal cells. Dig Dis Sci. 1995;40(12):2704–2711.
  • Winterbourn CC, Metodiewa D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med. 1999;27(3-4):322–328.
  • Lobo V, Patil A, Phatak A, et al. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118–126.
  • Kong S, Davison AJ. The relative effectiveness of.OH, H2O2, O2-, and reducing free radicals in causing damage to biomembranes. A study of radiation damage to erythrocyte ghosts using selective free radical scavengers. Biochim Biophys Acta. 1981;640(1):313–325.
  • Moller IM. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:561–591.
  • Flores HS, Wikfors GH, Dam HG. Reactive oxygen species are linked to the toxicity of the dinoflagellate alexandrium spp. to protists. Aquat Microb Ecol. 2012;66(2):199–209.
  • Zeeshan HMA, Lee GH, Kim H-R, et al. Endoplasmic reticulum stress and associated ROS. Int J Mol Sci. 2016;17(3):327.
  • Ozgur R, Turkan I, Uzilday B, et al. Endoplasmic reticulum stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of arabidopsis thaliana. J Exp Bot. 2014;65(5):1377–1390.
  • Araki K, Iemura S-i, Kamiya Y, et al. Ero1-α and PDIs constitute a hierarchical electron transfer network of endoplasmic reticulum oxidoreductases. J Cell Biol. 2013;202(6):861.
  • Yang P, Lüpken T, Habekuss A, et al. Protein disulfide isomerase like 5-1 is a susceptibility factor to plant viruses. Proc Natl Acad Sci U S A. 2014;111(6):2104.
  • Pérez-Martín M, Pérez-Pérez ME, Lemaire SD, et al. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in chlamydomonas reinhardtii. Plant Physiol. 2014;166(2):997–1008.
  • Cheng Y, Yang J-M. Survival and death of endoplasmic-reticulum-stressed cells: role of autophagy. World J Biol Chem. 2011;2(10):226–231.
  • Bonekamp NA, Volkl A, Fahimi HD, et al. Reactive oxygen species and peroxisomes: struggling for balance. Biofactors. 2009;35(4):346–355.
  • Gabaldón T. Peroxisome diversity and evolution. Philos Trans R Soc Lond B Biol Sci. 2010;365(1541):765–773.
  • Sandalio LM, Romero-Puertas MC. Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. Ann Bot. 2015;116(4):475–485.
  • López-Huertas E, del Río LA. ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol. 2016;57(7):1364–1376.
  • Schrader M, Fahimi HD. Peroxisomes and oxidative stress. Biochim Biophys Acta. 2006;1763(12):1755–1766.
  • Crane FL, Low H. Reactive oxygen species generation at the plasma membrane for antibody control. Autoimmun Rev. 2008;7(7):518–522.
  • Karkonen A, Kuchitsu K. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry. 2015;112:22–32.
  • Anderson A, Laohavisit A, Blaby IK, et al. Exploiting algal NADPH oxidase for biophotovoltaic energy. Plant Biotechnol J. 2016;14(1):22–28.
  • Anderson A, Bothwell JH, Laohavisit A, et al. NOX or not? evidence for algal NADPH oxidases. Trends Plant Sci. 2011;16(11):579–581.
  • Roginsky VA, Mohr D, Stocker R. Reduction of ubiquinone-1 by ascorbic acid is a catalytic and reversible process controlled by the concentration of molecular oxygen. Redox Rep. 1996;2(1):55–62.
  • Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.
  • Adam-Vizi V, Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci. 2006;27(12):639–645.
  • Trewin AJ, Bahr LL, Almast A, et al. Mitochondrial reactive oxygen species generated at the complex-II matrix or intermembrane space microdomain have distinct effects on redox signaling and stress sensitivity in caenorhabditis elegans. Antioxid Redox Signal. 2019;31(9):594–607.
  • Trewin AJ, Berry BJ, Wojtovich AP. Exercise and mitochondrial dynamics: keeping in shape with ROS and AMPK. Antioxidants (Basel). 2018;7(1):1–21.
  • Yoboue ED, Sitia R, Simmen T. Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death Dis. 2018;9(3):331.
  • Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006;141(2):391–396.
  • Nishiyama Y, Allakhverdiev SI. Murata N: protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant. 2011;142(1):35–46.
  • Larosa V, Meneghesso A, La Rocca N, et al. Mitochondria affect photosynthetic electron transport and photosensitivity in a green alga. Plant Physiol. 2018;176(3):2305–2314.
  • Karash S, Kwon YM. Iron-dependent essential genes in Salmonella Typhimurium. BMC Genomics. 2018;19(1):610–623.
  • Ugya AY, Hua X, Ma J. Biosorption of Cr3+ and Pb2+ from tannery wastewater using combined fruit waste. Appl Ecol Environ Res. 2019;17(2):1773–1787.
  • Ugya AY, Hua X, Agamuthu P, et al. Molecular approach to uncover the function of bacteria in petrochemical refining wastewater: a mini review. Appl Ecol Environ Res. 2019;17(2):3645–3665.
  • Li L, Li J, Bai J, et al. The effect and mechanism of organic pollutants oxidation and chemical energy conversion for neutral wastewater via strengthening reactive oxygen species. Sci Total Environ. 2019;651(Pt 1):1226–1235.
  • Katori E, Nagano T, Kunieda T, et al. Facile desulfurization of thiocarbonyl groups to carbonyls by superoxide. A model of metabolic reactions. Chem Pharm Bull (Tokyo). 1981;29(10):3075–3077.
  • Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30(11):1191–1212.
  • Schmidt R, Kunkowska AB, Schippers JHM. Role of reactive oxygen species during cell expansion in leaves. Plant Physiol. 2016;172(4):2098–2106.
  • Katsaros C, Karyophyllis D, Galatis B. Cytoskeleton and morphogenesis in brown algae. Ann Bot. 2006;97(5):679–693.
  • Oda T, Nakamura A, Shikayama M, et al. Generation of reactive oxygen species by raphidophycean phytoplankton. Biosci Biotechnol Biochem. 1997;61(10):1658–1662.
  • Marshall J-A, Hovenden M, Oda T, et al. Photosynthesis does influence superoxide production in the ichthyotoxic alga chattonella marina (raphidophyceae). J Plankton Res. 2002;24(11):1231–1236.
  • Tang YZ, Gobler CJ. Characterization of the toxicity of cochlodinium polykrikoides isolates from northeast US estuaries to finfish and shellfish. Harmful Algae. 2009;8(3):454–462.
  • Logrono W, Perez M, Urquizo G, et al. Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemosphere. 2017;176:378–388.
  • Palma H, Killoran E, Sheehan M, et al. Assessment of microalga biofilms for simultaneous remediation and biofuel generation in mine tailings water. Bioresour Technol. 2017;234:327–335.
  • Stauch-White K, Srinivasan VN, Kuo-Dahab WC, et al. The role of inorganic nitrogen in successful formation of granular biofilms for wastewater treatment that support cyanobacteria and bacteria. Amb Express. 2017;7:146–156.
  • Liu X, Ying K, Chen G, et al. Growth of chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide. Chemosphere. 2017;186:977–985.
  • Milne A, Davey MS, Worsfold PJ, et al. Real-time detection of reactive oxygen species generation by marine phytoplankton using flow injection—chemiluminescence. Limnol Oceanogr: Methods. 2009;7(10):706–715.
  • Kim D, Okamoto T, Oda T, et al. Possible involvement of the glycocalyx in the ichthyotoxicity of chattonella marina (raphidophyceae): immunological approach using antiserum against cell surface structures of the flagellate. Mar Biol. 2001;139(4):625–632.
  • Park SY, Choi ES, Hwang J, et al. Physiological and biochemical responses of prorocentrum minimum to high light stress. Ocean Sci J. 2009;44(4):199–204.
  • Liu W, Au DWT, Anderson DM, et al. Effects of nutrients, salinity, pH and light:dark cycle on the production of reactive oxygen species in the alga chattonella marina. J Exp Mar Biol Ecol. 2007;346(1):76–86.
  • Roach T, Na CS, Krieger-Liszkay A. High light-induced hydrogen peroxide production in chlamydomonas reinhardtii is increased by high CO2 availability. Plant J. 2015;81(5):759–766.
  • He Q, Yang H, Wu L, et al. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour Technol. 2015;191:219–228.
  • Scully NM, McQueen DJ, Lean DRS. Hydrogen peroxide formation: the interaction of ultraviolet radiation and dissolved organic carbon in lake waters along a 43–75°N gradient. Limnol Oceanogr. 1996;41(3):540–548.
  • Tillmann U, John U, Cembella A: On the allelochemical potency of the marine dinoflagellate alexandrium ostenfeldii against heterotrophic and autotrophic protists. J Plankton Res 2007, 29(6):527–543. doi: 10.1093/plankt/fbm034
  • Sunda WG, Huntsman SA. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar Chem. 1995;50(1):189–206.
  • Cakmak I, van de Wetering DA, Marschner H, et al. Involvement of superoxide radical in extracellular ferric reduction by iron-deficient bean roots. Plant Physiol. 1987;85(1):310–314.
  • Astuya A, Rivera A, Vega-Drake K, et al. Study of the ichthyotoxic microalga heterosigma akashiwo by transcriptional activation of sublethal marker Hsp70b in transwell co-culture assays. PloS one. 2018;13(8):e0201438–e0201438.
  • Kumar M, Singh AK, Sikandar M. Study of sorption and desorption of Cd (II) from aqueous solution using isolated green algae chlorella vulgaris. Appl Water Sci. 2018;8(8):225.
  • Hossain MA, Piyatida P, da Silva JAT, et al. Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Botany. 2012;2012:37.
  • Bilal M, Rasheed T, Sosa-Hernández JE, et al. Biosorption: An interplay between marine algae and potentially toxic elements-A review. Mar Drugs. 2018;16(2):65.
  • Kim D, Yamasaki Y, Yamatogi T, et al. The possibility of reactive oxygen species (ROS)-independent toxic effects of cochlodinium polykrikoides on damselfish (chromis caerulea). Biosci Biotechnol Biochem. 2009;73(3):613–618.
  • Shahraki J, Motallebi A, Aghvami M, et al. Ichthyotoxic cochlodinium polykrikoides induces mitochondrial mediated oxidative stress and apoptosis in rat liver hepatocytes. Iran J Pharm Res: IJPR. 2013;12(4):829–844.
  • Dorantes-Aranda JJ, Seger A, Mardones JI, et al. Progress in understanding algal bloom-mediated fish kills: the role of superoxide radicals, phycotoxins and fatty acids. PloS one. 2015;10(7):e0133549–e0133549.
  • Cho K, Sakamoto J, Noda T, et al. Comparative studies on the fish-killing activities of chattonella marina isolated in 1985 and chattonella antiqua isolated in 2010, and their possible toxic factors. Biosci Biotechnol Biochem. 2016;80(4):811–817.
  • Babior BM. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978;298(12):659–668.
  • Richter C. Reactive oxygen and DNA damage in mitochondria. Mutat Res. 1992;275(3-6):249–255.
  • Hauer MH. Gasser SM: chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev. 2017;31(22):2204–2221.
  • Ingram SP, Warmenhoven JW, Henthorn NT, et al. Mechanistic modelling supports entwined rather than exclusively competitive DNA double-strand break repair pathway. Sci Rep. 2019;9(1):6359.
  • Janssen A, Colmenares SU. Timely double-strand break repair and pathway choice in pericentromeric heterochromatin depend on the histone demethylase dKDM4A. Genes Dev. 2019;33(1-2):103–115.
  • Vieira A, Telo J, Dias RMB. Reaction of purines with hydroxyl radical generated by photolysis of mercaptopyridine-N-oxides. J de Chimie Physique. 1997;94:318–325.
  • Cadet J, Wagner JR. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol. 2013;5(2):a012559.
  • Davies H. A review of the review. Financial Markets, Institutions & Instruments. 2005;14(5):247–252.
  • Dalle-Donne I, Scaloni A, Giustarini D, et al. Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. Mass Spectrom Rev. 2005;24(1):55–99.
  • Moller IM, Kristensen BK. Protein oxidation in plant mitochondria as a stress indicator. Photochem Photobiol Sci. 2004;3(8):730–735.
  • Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995;18(2):321–336.
  • Buxton GV, Greenstock CL, Helman WP, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in aqueous solution. J Phys Chem Ref Data. 1988;17(2):513–886.
  • Schoneich C. Thiyl radicals and induction of protein degradation. Free Radic Res. 2016;50(2):143–149..
  • Trujillo M, Alvarez B, Radi R. One- and two-electron oxidation of thiols: mechanisms, kinetics and biological fates. Free Radic Res. 2016;50(2):150–171.
  • Blokhina O, Virolainen E. Fagerstedt KV: antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot. 2003;91(Spec No(2)):179–194.
  • Mallick N, Mohn FH. Reactive oxygen species: response of algal cells. J Plant Physiol. 2000;157(2):183–193.
  • Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5(35):27986–28006.
  • Banskota AH, Sperker S, Stefanova R, et al. Antioxidant properties and lipid composition of selected microalgae. J Appl Phycol. 2019;31(1):309–318.
  • Shoaib H, Sibi G. Antioxidant system response in green microalga chlorococcopsis minuta against nutrient stress in growth media. Asian J Biol Sci. 2018;11(4):210–216.
  • Shi K, Gao Z, Shi T-Q, et al. Reactive oxygen species-mediated cellular stress response and lipid accumulation in oleaginous microorganisms: The state of the art and future perspectives. Front Microbiol. 2017;8(793):1–9.
  • Janků M, Luhová L, Petřivalský M. On the origin and fate of reactive oxygen species in plant cell compartments. Antioxidants (Basel). 2019;8(4):1–15.
  • Stone DJR, Yang S. Hydrogen peroxide: a signaling messenger. Antioxid. Redox Signal.. 2006;8(3-4):243–270.
  • Chen S, Chen M, Wang Z, et al. Toxicological effects of chlorpyrifos on growth, enzyme activity and chlorophyll a synthesis of freshwater microalgae. Environ Toxicol Pharmacol. 2016;45:179–186.
  • Ramadass K, Megharaj M, Venkateswarlu K, et al. Toxicity and oxidative stress induced by used and unused motor oil on freshwater microalga, pseudokirchneriella subcapitata. Environ Sci Pollut Res Int. 2015;22(12):8890–8901.
  • Chokshi K, Pancha I, Ghosh A, et al. Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga acutodesmus dimorphus. Biotechnol Biofuels. 2017;10(1):1–12.
  • Chokshi K, Pancha I, Trivedi K, et al. Biofuel potential of the newly isolated microalgae acutodesmus dimorphus under temperature induced oxidative stress conditions. Bioresour Technol. 2015;180:162–171.
  • Chokshi K, Pancha I, Ghosh A, et al. Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae acutodesmus dimorphus. Bioresour Technol. 2017;244(Pt 2):1376–1383.
  • Wang C, Dong D, Zhang L, et al. Response of freshwater biofilms to antibiotic florfenicol and ofloxacin stress: role of extracellular polymeric substances. Int J Environ Res Public Health. 2019;16(5):1–11.
  • Ismaiel MMS, El-Ayouty YM, Piercey-Normore M. Role of pH on antioxidants production by spirulina (arthrospira) platensis. Braz J Microbiol. 2016;47:298–304.
  • Sun X, Zhong Y, Huang Z, et al. Selenium accumulation in unicellular green alga chlorella vulgaris and Its effects on antioxidant enzymes and content of photosynthetic pigments. PLOS ONE. 2014;9(11):1–8.
  • Cheng J, Qiu H, Chang Z, et al. The effect of cadmium on the growth and antioxidant response for freshwater algae chlorella vulgaris. SpringerPlus. 2016;5(1):1–8.
  • Janknegt PJ, De Graaff CM, Van De Poll WH, et al. Short-term antioxidative responses of 15 microalgae exposed to excessive irradiance including ultraviolet radiation. Eur J Phycol. 2009;44(4):525–539.
  • Wuerges J, Lee JW, Yim YI, et al. Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc Natl Acad Sci U S A. 2004;101(23):8569–8574.
  • Ragsdale SW. Nickel-based enzyme systems. J Biol Chem. 2009;284(28):18571–18575.
  • Knauert S, Knauer K. The role of reactive oxygen species in copper toxicity to two freshwater green algae(1). J Phycol. 2008;44(2):311–319.
  • Grace SC. Phylogenetic distribution of superoxide dismutase supports an endosymbiotic origin for chloroplasts and mitochondria. Life Sci. 1990;47(21):1875–1886.
  • Campbell WS, Laudenbach DE. Characterization of four superoxide dismutase genes from a filamentous cyanobacterium. J Bacteriol. 1995;177(4):964–972.
  • Thomas DJ, Thomas JB, Prier SD, et al. Iron superoxide dismutase protects against chilling damage in the cyanobacterium synechococcus species PCC7942. Plant Physiol. 1999;120(1):275–282.
  • Mhamdi A, Queval G, Chaouch S, et al. Catalase function in plants: a focus on arabidopsis mutants as stress-mimic models. J Exp Bot. 2010;61(15):4197–4220.
  • Mashhadi Z, Newcomer ME, Brash AR. The Thr-His connection on the distal heme of catalase-related hemoproteins: A hallmark of reaction with fatty acid hydroperoxides. ChemBioChem. 2016;17(21):2000–2006.
  • Kato J, Yamahara T, Tanaka K, et al. Characterization of catalase from green algae chlamydomonas reinhardtii. J Plant Physiol. 1997;151:262–268.
  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, et al. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot. 2014;65(2):527–538.
  • Sansone C, Brunet C. Promises and challenges of microalgal antioxidant production. Antioxidants (Basel). 2019;8(7):1–9.
  • Poljšak B, Fink R. The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution. Oxid Med Cell Longev. 2014;2014:671539–671539.
  • Wu C-M, Cheng Y-L, Dai Y-H, et al. α-Tocopherol protects keratinocytes against ultraviolet A irradiation by suppressing glutathione depletion, lipid peroxidation and reactive oxygen species generation. Biomed Rep. 2014;2(3):419–423.
  • Karuppanapandian T, Moon J-C, Kim C, et al. Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci. 2011;5:709–725.
  • Zuluaga M, Gueguen V, Pavon-Djavid G, et al. Carotenoids from microalgae to block oxidative stress. BioImpacts. 2017;7(1):1–3.
  • Kawata A, Murakami Y, Suzuki S, et al. Anti-inflammatory activity of β-carotene, lycopene and Tri-n-butylborane, a scavenger of reactive oxygen species. In Vivo. 2018;32(2):255–264.
  • Patel A, Mishra S, Ghosh PK. Antioxidant potential of C-phycocyanin isolated from cyanobacterial species lyngbya, phormidium and spirulina spp. Indian J Biochem Biophys. 2006;43(1):25–31.
  • Zhou Z-P, Liu L-N, Chen X-L, et al. Factors that effect antioxidant activity of c-phycocyanins from spirulina platensis. J Food Biochem. 2005;29(3):313–322.
  • Abdo SM, Hetta MH, Samhan FA, et al. Phytochemical and antibacterial study of five freshwater algal species. Asian J Plant Sci. 2012;11(3):109–116.
  • Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol. 1998;49:249–279.
  • Wells WW, Xu DP. Dehydroascorbate reduction. J Bioenerg Biomembr. 1994;26(4):369–377.
  • Whitbread AK, Masoumi A, Tetlow N, et al. Characterization of the omega class of glutathione transferases. Meth Enzymol. 2005;401:78–99.
  • Agati G, Azzarello E, Pollastri S, et al. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 2012;196:67–76.
  • Safafar H, van Wagenen J, Moller P, et al. Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar Drugs. 2015;13(12):7339–7356.
  • Mendes RL, Nobre BP, Cardoso MT, et al. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chim Acta. 2003;356:328–334.
  • Plaza M, Herrero M, Cifuentes A, et al. Innovative natural functional ingredients from microalgae. J Agric Food Chem. 2009;57(16):7159–7170.
  • Carballo-Cardenas EC, Tuan PM, Janssen M, et al. Vitamin E (alpha-tocopherol) production by the marine microalgae dunaliella tertiolecta and tetraselmis suecica in batch cultivation. Biomol Eng. 2003;20(4-6):139–147.
  • Goiris K, Muylaert K, Voorspoels S, et al. Detection of flavonoids in microalgae from different evolutionary lineages. J Phycol. 2014;50(3):483–492.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.