561
Views
26
CrossRef citations to date
0
Altmetric
Research Articles

Enhanced hexavalent chromium (Cr(VI)) removal from aqueous solution by Fe–Mn oxide-modified cattail biochar: adsorption characteristics and mechanism

, &
Pages 138-154 | Received 11 Sep 2019, Accepted 27 Nov 2019, Published online: 06 Dec 2019

References

  • Hausladen DM, Alexander-Ozinskas A, Mcclain C, et al. Hexavalent chromium sources and distribution in California groundwater. Environ Sci Technol. 2018;52:8242–8251. doi: 10.1021/acs.est.7b06627
  • Bharagava RN, Mishra S. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol Environ Saf. 2018;147:102–109. doi: 10.1016/j.ecoenv.2017.08.040
  • Anastopoulos I, Anagnostopoulos VA, Bhatnagar A, et al. A review for chromium removal by carbon nanotubes. Chemistry and Ecology. 2017;33:572–588. doi: 10.1080/02757540.2017.1328503
  • Owlad M, Aroua MK, Daud WAW, et al. Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut. 2009;200:59–77. doi: 10.1007/s11270-008-9893-7
  • Huang J, Cao Y, Shao Q, et al. Magnetic nanocarbon adsorbents with enhanced hexavalent chromium removal: morphology dependence of fibrillar vs particulate structures. Ind Eng Chem Res. 2017;56:10689–10701. doi: 10.1021/acs.iecr.7b02835
  • Mamais D, Noutsopoulos C, Kavallari I, et al. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations. Chemosphere. 2016;152:238–244. doi: 10.1016/j.chemosphere.2016.02.124
  • Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B. A review of chemical, electrochemical and biological methods for aqueous Cr (VI) reduction. J Hazard Mater. 2012;223:1–12. doi: 10.1016/j.jhazmat.2012.04.054
  • Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manage. 2011;92:407–418. doi: 10.1016/j.jenvman.2010.11.011
  • Miretzky P, Cirelli AF. Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J Hazard Mater. 2010;180:1–19. doi: 10.1016/j.jhazmat.2010.04.060
  • Han Y, Cao X, Ouyang X, et al. Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: effects of production conditions and particle size. Chemosphere. 2016;145:336–341. doi: 10.1016/j.chemosphere.2015.11.050
  • Lehmann J, Rillig MC, Thies J, et al. Biochar effects on soil biota–a review. Soil Biol Biochem. 2011;43:1812–1836. doi: 10.1016/j.soilbio.2011.04.022
  • Lehmann J, Joseph S. Biochar for environmental management: an introduction. Biochar for environmental management, Routledge, 2015, 33–46.
  • Shang J, Zong M, Yu Y, et al. Removal of chromium (VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar. J Environ Manage. 2017;197:331–337. doi: 10.1016/j.jenvman.2017.03.085
  • Ma Y, Liu W, Zhang N, et al. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresour Technol. 2014;169:403–408. doi: 10.1016/j.biortech.2014.07.014
  • Wu K, Liu T, Xue W, et al. Arsenic(III) oxidation/adsorption behaviors on a new bimetal adsorbent of Mn-oxide-doped Al oxide. Chem Eng J. 2012;192:343–349. doi: 10.1016/j.cej.2012.03.058
  • Yi Y, Tu G, Zhao D, et al. Biomass waste components significantly influence the removal of Cr(VI) using magnetic biochar derived from four types of feedstocks and steel pickling waste liquor. Chem Eng J. 2019;360:212–220. doi: 10.1016/j.cej.2018.11.205
  • Hu X, Ding Z, Zimmerman AR, et al. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res. 2015;68:206–216. doi: 10.1016/j.watres.2014.10.009
  • Altundogan HS. Cr(VI) removal from aqueous solution by iron (III) hydroxide-loaded sugar beet pulp. Process Biochem. 2005;40:1443–1452. doi: 10.1016/j.procbio.2004.06.027
  • Li E, Zeng X, Fan Y. Removal of chromium ion(III) from aqueous solution by manganese oxide and microemulsion modified diatomite. Desalination. 2009;238:158–165. doi: 10.1016/j.desal.2007.11.062
  • Zhang X, Lv L, Qin Y, et al. Removal of aqueous Cr(VI) by a magnetic biochar derived from Melia azedarach wood. Bioresour Technol. 2018;256:1–10. doi: 10.1016/j.biortech.2018.01.145
  • Dashtban Kenari SL, Barbeau B. Size and zeta potential of oxidized iron and manganese in water treatment: influence of pH, ionic strength, and hardness. J Environ Eng. 2016;142:40160101–40160109. doi: 10.1061/(ASCE)EE.1943-7870.0001101
  • Wang L, Wang J, Wang Z, et al. Synthesis of Ce-doped magnetic biochar for effective Sb(V) removal: performance and mechanism. Powder Technol. 2019;345:501–508. doi: 10.1016/j.powtec.2019.01.022
  • Wang S, Gao B, Li Y, et al. Sorption of arsenate onto magnetic iron–manganese (Fe–Mn) biochar composites. RSC Adv. 2015;5:67971–67978. doi: 10.1039/C5RA12137J
  • Liu H, Bruton TA, Li W, et al. Oxidation of benzene by persulfate in the presence of Fe(III)-and Mn(IV)-containing oxides: stoichiometric efficiency and transformation products. Environ Sci Technol. 2016;50:890–898. doi: 10.1021/acs.est.5b04815
  • Dong X, Ma L Q, Li Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J Hazard Mater. 2011;190:909–915. doi: 10.1016/j.jhazmat.2011.04.008
  • Schmuhl R, Krieg HM, Keizer K. Adsorption of Cu(II) and Cr(VI) ions by chitosan: kinetics and equilibrium studies. Water Sa. 2001;27:1–8.
  • Bhattacharya AK, Naiya TK, Mandal SN, et al. Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents. Chem Eng J. 2008;137:529–541.
  • Jiang J, Xu R. Application of crop straw derived biochars to Cu(II) contaminated Ultisol: evaluating role of alkali and organic functional groups in Cu(II) immobilization. Bioresour Technol. 2013;133:537–545. doi: 10.1016/j.biortech.2013.01.161
  • Zhang W, Niu J, Morales VL, et al. Transport and retention of biochar particles in porous media: effect of pH, ionic strength, and particle size. Ecohydrology. 2010;3:497–508. doi: 10.1002/eco.160
  • Xu R, Xiao S, Yuan J, et al. Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresour Technol. 2011;102:10293–10298. doi: 10.1016/j.biortech.2011.08.089
  • Park CM, Han J, Chu KH, et al. Influence of solution pH, ionic strength, and humic acid on cadmium adsorption onto activated biochar: experiment and modeling. J Ind Eng Chem. 2017;48:186–193. doi: 10.1016/j.jiec.2016.12.038
  • Tan G, Mao Y, Wang H, et al. Comparison of biochar-and activated carbon-supported zerovalent iron for the removal of Se (IV) and Se (VI): influence of pH, ionic strength, and natural organic matter. Environ Sci Pollut Res. 2019;26:21609–21618. doi: 10.1007/s11356-019-05497-0
  • Lützenkirchen J. Ionic strength effects on cation sorption to oxides: macroscopic observations and their significance in microscopic interpretation. J Colloid Interface Sci. 1997;195:149–155. doi: 10.1006/jcis.1997.5160
  • Qi Z, Joshi TP, Liu R, et al. Adsorption combined with superconducting high gradient magnetic separation technique used for removal of arsenic and antimony. J Hazard Mater. 2018;343:36–48. doi: 10.1016/j.jhazmat.2017.09.007
  • Qi Z, Joshi TP, Liu R, et al. Synthesis of Ce (III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution. J Hazard Mater. 2017;329:193–204. doi: 10.1016/j.jhazmat.2017.01.007
  • Wang L, Wang J, Zhang R, et al. Highly efficient As (V)/Sb (V) removal by magnetic sludge composite: synthesis, characterization, equilibrium, and mechanism studies. RSC Adv. 2016;6:42876–42884. doi: 10.1039/C6RA06208C
  • Wang Z, Shen D, Shen F, et al. Phosphate adsorption on lanthanum loaded biochar. Chemosphere. 2016;150:1–7. doi: 10.1016/j.chemosphere.2016.02.004
  • Zhang W, Zheng J, Zheng P, et al. Sludge-derived biochar for arsenic (III) immobilization: effects of solution chemistry on sorption behavior. J Environ Qual. 2015;44:1119–1126. doi: 10.2134/jeq2014.12.0536
  • Selvi K, Pattabhi S, Kadirvelu K. Removal of Cr (VI) from aqueous solution by adsorption onto activated carbon. Bioresour Technol. 2001;80:87–89. doi: 10.1016/S0960-8524(01)00068-2
  • Namgay T, Singh B, Singh BP. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Res. 2010;48:638–647. doi: 10.1071/SR10049
  • Zhou Z, Xu Z, Feng Q, et al. Effect of pyrolysis condition on the adsorption mechanism of lead, cadmium and copper on tobacco stem biochar. J Clean Prod. 2018;187:996–1005. doi: 10.1016/j.jclepro.2018.03.268
  • Liu X, Gao M, Qiu W, et al. Fe–Mn–Ce oxide-modified biochar composites as efficient adsorbents for removing As (III) from water: adsorption performance and mechanisms. Environ Sci Pollut Res. 2019;26:17373–17382. doi: 10.1007/s11356-019-04914-8
  • Wang S, Gao B, Li Y, et al. Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead. Bioresour Technol. 2015;181:13–17. doi: 10.1016/j.biortech.2015.01.044
  • Wang S, Gao B, Li Y. Enhanced arsenic removal by biochar modified with nickel (Ni) and manganese (Mn) oxyhydroxides. J Ind Eng Chem. 2016;37:361–365. doi: 10.1016/j.jiec.2016.03.048
  • Yu H, Liu J, Shen J, et al. Preparation of MnOx-loaded biochar for Pb2+ removal: adsorption performance and possible mechanism. J Taiwan Inst Chem Eng. 2016;66:313–320. doi: 10.1016/j.jtice.2016.07.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.