157
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Potential of arbuscular mycorrhizae and tall fescue in remediation of soils polluted with zinc

, &
Pages 122-137 | Received 29 Sep 2019, Accepted 12 Dec 2019, Published online: 01 Jan 2020

References

  • Hu Y, Liu X, Bai J, et al. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environ Sci Poll. 2013;20:6150–6159. doi: 10.1007/s11356-013-1668-z
  • Friedlová M. The influence of heavy metals on soil biological and chemical properties. Soil Water Res. 2010;5:21–27. doi: 10.17221/11/2009-SWR
  • Hodson ME. Effects of heavy metals and metalloids on soil organisms. In: Alloway BJ, editor. Heavy metals in soils-trace metals and metalloids in soils and their bioavailability. Environmental pollution. 3rd ed. New York: Springer; 2013. p. 141–161.
  • Shi W, Zhang Y, Chen S, et al. Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. Plant Cell Environ. 2019;42:1087–1103. doi: 10.1111/pce.13471
  • Yang Y, Liang Y, Ghosh A, et al. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Environ Sci Pollut Res Int. 2015;22:13179–13193. doi: 10.1007/s11356-015-4521-8
  • Kang W, Bao J, Zheng J, et al. Potential of woody plants from a Tonglushan ancient copper spoil heap for phytoremediation of heavy metal contaminated soil. Int J Phytorem. 2016;20:111–120.
  • Liu L, Li W, Song W, et al. Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ. 2018;633:206–219. doi: 10.1016/j.scitotenv.2018.03.161
  • Jarrah M, Ghasemi-fasaei R, Ronaghi A, et al. Enhanced Ni phytoextraction by effectiveness of chemical and biological amendments in sunflower plant grown in Ni-polluted soils. Chem Ecol. 2019;35:732–745. doi: 10.1080/02757540.2019.1644325
  • Gamalero E, Lingua G, Berta G, et al. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol. 2009;55:501–514. doi: 10.1139/W09-010
  • Wu SC, Wong CC, Shu WS, et al. Mycorrhizo-remediation of lead/zinc mine tailings using vetiver: a field study. Int J Phytoremediation. 2011;13:61–74. doi: 10.1080/15226514.2010.525562
  • Ma Y, Prasad MNV, Rajkumar M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotech Adv. 2011;29:248–258. doi: 10.1016/j.biotechadv.2010.12.001
  • Cabral L, Soares CR, Giachini AJ, et al. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J Microb Biot. 2015;31:1655–1664. doi: 10.1007/s11274-015-1918-y
  • Zarei M, König S, Hempel S, et al. Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environ Pollut. 2008;156:1277–1283. doi: 10.1016/j.envpol.2008.03.006
  • Zarei M, Hempel S, Wubet T, et al. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut. 2010;158:2757–2765. doi: 10.1016/j.envpol.2010.04.017
  • de Souza LA, de Andrade SAL, de Souza SCR, et al. Arbuscular mycorrhiza confers Pb tolerance in Calopogonium mucunoides. Acta Physiol Plant. 2012;34:523–531. doi: 10.1007/s11738-011-0849-y
  • Hildebrandt U, Kaldorf M, Bothe H. The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol. 1999;154:709–717. doi: 10.1016/S0176-1617(99)80249-1
  • Janousková M, Pavlíková D, Macek T, et al. Arbuscular mycorrhiza decreases cadmium phytoextraction by transgenic tobacco with inserted metallothionein. Plant Soil. 2005;272:29–40. doi: 10.1007/s11104-004-3847-7
  • Jamal A, Ayub N, Usman M, et al. Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soybean and lentil. Int J Phytorem. 2002;4:205–221. doi: 10.1080/15226510208500083
  • Soares CRFS, Siqueira JO. Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biol Fert Soils. 2008;44:833–841. doi: 10.1007/s00374-007-0265-z
  • Leung HM, Yea ZH, Wong MH. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut. 2006;139:1–8. doi: 10.1016/j.envpol.2005.05.009
  • Yang Y, He C, Huang L, et al. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS ONE. 2017;12(8):e0182264. doi: 10.1371/journal.pone.0182264
  • Wang F. Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications. Crit Rev Environ Sci Technol. 2017;47:1901–1957. doi: 10.1080/10643389.2017.1400853
  • Meier S, Borie F, Bolan N, et al. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol. 2012;42:741–775. doi: 10.1080/10643389.2010.528518
  • Göhre V, Paszkowski U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta. 2006;223:1115–1122. doi: 10.1007/s00425-006-0225-0
  • Wang FY, Lin XG, Yin R. Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil. 2005;269:225–232. doi: 10.1007/s11104-004-0517-8
  • Bahraminia M, Zarei M, Ronaghi A, et al. Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead-contaminated soil by vetiver grass. Int J Phytorem. 2016;18:730–737. doi: 10.1080/15226514.2015.1131242
  • Jarrah M, Ghasemi-Fasaei R, Karimian N, et al. Investigation of arbuscular mycorrhizal fungus and EDTA efficiencies on lead phytoremediation by sunflower in a calcareous soil. Bioremediat J. 2014;18:71–79. doi: 10.1080/10889868.2013.847401
  • Audet P, Charest C. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: Meta-analytical and conceptual perspectives. Environ Pollut. 2007;147:609–614. doi: 10.1016/j.envpol.2006.10.006
  • Grime JP, Hodgson JG, Hunt R. Comparative plant ecology. London: Unwin, Hyman; 1988.
  • Bryson GM, Barker AV. Phytoextraction of zinc by Indian mustard and tall fescue. Commun Soil Sci Plant Anal. 2007;38:315–335. doi: 10.1080/00103620601172316
  • Palazzo AJ, Cary TJ, Hardy SE, et al. Root growth and metal uptake in four grasses grown on zinc-contaminated soils. J Environ Qual. 2003;32:834–840. doi: 10.2134/jeq2003.8340
  • Hannaway D, Fransen S, Cropper J, et al. Tall fescue (Festuca arundinacea Schreb.). PNW Ext Ser Circ 504. Corvallis (OR): Oregon State Univ; 1999.
  • Harley JL, Harley EL. A check-list of mycorrhiza in the British flora. New Phytol. 1987;105:1–102. doi: 10.1111/j.1469-8137.1987.tb00674.x
  • Hetrick BAD, Wilson GWT, Figge DAH. The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoil. Environ Pollut. 1994;86:171–179. doi: 10.1016/0269-7491(94)90188-0
  • Lu M, Zhang ZZ. Phytoremediation of soil co-contaminated with heavy metals and deca-BDE by coplanting of Sedum alfredii with tall fescue associated with Bacillus cereus JP12. Plant Soil. 2014;382:89–102. doi: 10.1007/s11104-014-2147-0
  • Taylor RW, Ibeabuchi IO, Sistani KR, et al. Heavy metal concentration in forage grasses and extractability from some acid mine spoils. Water Air Soil Pollut. 1993;68:363–372. doi: 10.1007/BF00478463
  • Nelson RE. Carbonate and gypsum. In: Page AL, Miller RH, Keeney DR, editors. Methods of soil analysis. Part 2, Chemical and microbiological properties, 2nd Edition, No. 9. Madison (WI): American Society of Agronomy and Soil Science Society of America; 1982. p. 181–197.
  • Walkley A, Black IA. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37:29–38. doi: 10.1097/00010694-193401000-00003
  • Thomas GW. Soil pH and soil acidity. In: Sparks DL, editor. Methods of soil analysis. Part 3, no. 5. Madison (WI): American Society of Agronomy and Soil Science Society of America; 1996. p. 475–490.
  • Gee GW, Bauder JW. Particle size analysis. In: Klute A, editor. Methods of soil analysis, Part 1, Physical and mineralogical methods, 2nd Edition, No. 9. Madison (WI): American Society of Agronomy and Soil Science Society of America; 1986. p. 383–411.
  • Zarei M, Saleh-Rastin N, Jouzani GH, et al. Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. Eur J Soil Biol. 2008;44:381–391. doi: 10.1016/j.ejsobi.2008.06.004
  • Reyhanitabar A, Ardalan M, Gilkes RJ, et al. Zinc sorption characteristics of some selected calcareous soils of Iran. J Agr Sci Tech. 2010;12:99–110.
  • Zahedifar M, Karimian N, Yasrebi J. Influence of applied zinc and organic matter on zinc desorption kinetics in calcareous soils. Arch Agron Soil Sci. 2012;58:169–178. doi: 10.1080/03650340.2010.507195
  • Zhu YG, Christie P, Laidlaw AS. Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere. 2001;42:193–199. doi: 10.1016/S0045-6535(00)00125-9
  • Chen BD, Li XL, Tao HQ, et al. The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere. 2003;50:839–846. doi: 10.1016/S0045-6535(02)00228-X
  • Sudová R, Vosátka M. Differences in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants. Plant Soil. 2007;296:77–83. doi: 10.1007/s11104-007-9291-8
  • Kormanik PP, McGraw AC. Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenck NC, editor. Methods and principles of mycorrhizal research. St, Paul: American Phytopathological Society; 1982. p. 37–45.
  • Kuo S. Phosphorus. In: Sparks DL, editor. Methods of soil analysis. Part 3. Madison (WI): American Society of Agronomy and Soil Science Society of America; 1996. p. 869–919.
  • Jones JB, Case VW. Sampling, handling, and analyzing plant tissue samples. In: Westerman RL, editor. Soil testing and plant analysis. Madison (WI): Soil Science Society of America; 1990. p. 389–427.
  • Wang FY, Lin XG, Yin R. Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decrease Cu phytoextraction by maize from Cu-contaminated soil. Pedobiologia. 2007;51:99–109. doi: 10.1016/j.pedobi.2007.02.003
  • Pierzynski GM, Lambert M, Hetrick BAD, et al. Phytostabilization of metal mine tailing using tall fescue. Pract Period Hazard Toxic Radioact Waste Manag. 2002;6:212–217. doi: 10.1061/(ASCE)1090-025X(2002)6:4(212)
  • Marschner H. Mineral nutrition of plants. 2nd ed. London: Academic Press; 1995.
  • Frisberg L, Nordberg GF, Kessler E, et al. Handbook of the toxicology of metals. Amesterdam: Elsevier Science Publication; 1996.
  • Oudeh M, Khan M, Scullion J. Plant accumulation of potentially toxic elements in sewage sludge as affected by soil organic matter level and mycorrhizal fungi. Environ Pollu. 2002;116:293–300. doi: 10.1016/S0269-7491(01)00128-2
  • Garg N, Chandel S. Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev. 2010;30:581–599. doi: 10.1051/agro/2009054
  • Hassan SE, Hijri M, Starnaud M. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnol. 2013;30:780–787. doi: 10.1016/j.nbt.2013.07.002
  • Punamiya P, Datta R, Sarkar D, et al. Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater. 2010;1774:65–474.
  • Malekzadeh E, Alikhani HA, Savaghebi-Firoozabadi GR, et al. Influence of arbuscular mycorrhizal fungi and an improving growth bacterium on Cd uptake and maize growth in Cd-polluted soils. Spanish J Agric Res. 2011;9:1213–1223. doi: 10.5424/sjar/20110904-069-11
  • Schneider J, Bundschuh J, Rangel WDM, et al. Potential of different AM fungi (native from As-contaminated and uncontaminated soils) for supporting Leucaena leucocephala growth in As-contaminated soil. Environ Pollut. 2017;224:125–135. doi: 10.1016/j.envpol.2017.01.071

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.