261
Views
3
CrossRef citations to date
0
Altmetric
Environmental Chemistry/Technology

The role of the direct and indirect mechanism in the advanced oxidation process induced degradation of ciprofloxacin

, , , &
Pages 1-18 | Received 05 Apr 2022, Accepted 01 Jan 2023, Published online: 19 Jan 2023

References

  • Alapi, T., and A. Dombi. 2007. “Comparative Study of the UV and UV/VUV-Induced Photolysis of Phenol in Aqueous Solution.” Journal of Photochemistry and Photobiology A: Chemistry 188 (2–3): 409–418. doi:10.1016/j.jphotochem.2007.01.002.
  • Alharbi, S. K., and W. E. Price. 2017. “Degradation and Fate of Pharmaceutically Active Contaminants by Advanced Oxidation Processes.” Current Pollution Reports 3 (4): 268–280. doi:10.1007/s40726-017-0072-6.
  • An, T., H. Yang, G. Li, W. Song, W. J. Cooper, and X. Nie. 2010. “Kinetics and Mechanism of Advanced Oxidation Processes (AOPs) in Degradation of Ciprofloxacin in Water.” Applied Catalysis B: Environmental 94 (3–4): 288–294. doi:10.1016/j.apcatb.2009.12.002.
  • Andreu, V., C. Blasco, and Y. Picó. 2007. “Analytical Strategies to Determine Quinolone Residues in Food and the Environment.” TrAC Trends in Analytical Chemistry 26 (6): 534–556. doi:10.1016/j.trac.2007.01.010.
  • Balachandran, R., M. Zhao, B. Dong, I. Brown, S. Raghavan, and M. Keswani. 2014. “Role of Ammonia and Carbonates in Scavenging Hydroxyl Radicals Generated during Megasonic Irradiation of Wafer Cleaning Solutions.” Microelectronic Engineering 130: 82–86. doi:10.1016/j.mee.2014.10.022.
  • Batchu, S. R., V. R. Panditi, K. E. O'Shea, and P. R. Gardinali. 2014. “Photodegradation of Antibiotics Under Simulated Solar Radiation: Implications for Their Environmental Fate.” The Science of the Total Environment 470–471: 299–310. doi:10.1016/j.scitotenv.2013.09.057.
  • Benner, J., and T. A. Ternes. 2009. “Ozonation of Metoprolol: Elucidation of Oxidation Pathways and Major Oxidation Products.” Environmental Science & Technology 43 (14): 5472–5480. doi:10.1021/es900280e.
  • Budai, M., P. Gróf, A. Zimmer, K. Pápai, I. Klebovich, and K. Ludányi. 2008. “UV Light Induced Photodegradation of Liposome Encapsulated Fluoroquinolones: An MS Study.” Journal of Photochemistry and Photobiology A: Chemistry 198 (2–3): 268–273. doi:10.1016/j.jphotochem.2008.04.004.
  • Cardoza, L. A., C. W. Knapp, C. K. Larive, J. B. Belden, M. Lydy, and D. W. Graham. 2005. “Factors Affecting the Fate of Ciprofloxacin in Aquatic Field Systems.” Water, Air, and Soil Pollution 161 (1–4): 383–398. doi:10.1007/s11270-005-5550-6.
  • Chen, F., G. X. Huang, F. B. Yao, Q. Yang, Y. M. Zheng, Q. B. Zhao, and H. Q. Yu. 2020. “Catalytic Degradation of Ciprofloxacin by a Visible-Light-Assisted Peroxymonosulfate Activation System: Performance and Mechanism.” Water Research 173: 115559. doi:10.1016/j.watres.2020.115559.
  • Chi, H., J. Wan, Y. Ma, Y. Wang, M. Huang, X. Li, and M. Pu. 2020. “ZSM-5-(C@Fe) Activated Peroxymonosulfate for Effectively Degrading Ciprofloxacin: In-Depth Analysis of Degradation Mode and Degradation Path.” Journal of Hazardous Materials 398: 123024. doi:10.1016/j.jhazmat.2020.123024.
  • Dearden, J. C. 2016. “The History and Development of Quantitative Structure-Activity Relationships (QSARs).” International Journal of Quantitative Structure-Property Relationships 1 (1): 1–44. doi:10.4018/ijqspr.2016010101.
  • Deng, Y., and R. Zhao. 2015. “Advanced Oxidation Processes (AOPs) in Wastewater Treatment.” Current Pollution Reports 1 (3): 167–176. doi:10.1007/s40726-015-0015-z.
  • Directive 2013/39/EU. 2013. “Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy Text with EEA Relevance.”Directive 2013/39/EU of the European Parliament and of the Council of 12 August.
  • Durán-Álvarez, J. C., E. Avella, R. M. Ramírez-Zamora, and R. Zanella. 2016. “Photocatalytic Degradation of Ciprofloxacin Using Mono- (Au, Ag and Cu) and Bi- (Au – Ag and Au – Cu) Metallic Nanoparticles Supported on TiO 2 under UV-C and Simulated Sunlight.” Catalysis Today 266: 175–187. doi:10.1016/j.cattod.2015.07.033.
  • Dusi, E., M. Rybicki, and D. Jungmann. 2019. “The Database ‘Pharmaceuticals in the Environment’ – Update and New Analysis.” In: Umweltbundesamt ed: 103. June. www.umweltbundesamt.de
  • European Commission. 2015. “Commission Implementing Decision (EU) 2015/495.” Official Journal of the European Union 58: 40–42.
  • European Commission. 2020. “Decision (EU) 2020/1161.” Official Journal of the European Union 257: 32–35. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2020.257.01.0032.01.ENG&toc=OJ:L:2020:257:TOC.
  • European Commission. 2021. “Information Platform for Chemical Monitoring.”. https://ipchem.jrc.ec.europa.eu/#databaseConsole/PHARMSUBA.
  • Fatta-Kassinos, D., M. I. Vasquez, and K. Kümmerer. 2011. “Transformation Products of Pharmaceuticals in Surface Waters and Wastewater Formed during Photolysis and Advanced Oxidation Processes - Degradation, Elucidation of Byproducts and Assessment of Their Biological Potency.” Chemosphere 85 (5): 693–709. doi:10.1016/j.chemosphere.2011.06.082.
  • Fekadu, S., E. Alemayehu, R. Dewil, and B. Van der Bruggen. 2019. “Pharmaceuticals in Freshwater Aquatic Environments: A Comparison of the African and European Challenge.” The Science of the Total Environment 654: 324–337. doi:10.1016/j.scitotenv.2018.11.072.
  • Gros, M., M. Petrovic, and D. Barceló. 2007. “Wastewater Treatment Plants as a Pathway for Aquatic Contamination by Pharmaceuticals in the Ebro River Basin (Northeast Spain).” Environmental Toxicology and Chemistry 26 (8): 1553–1562. doi:10.1897/06-495R.1.
  • Guo, H. G., N. Y. Gao, W. H. Chu, L. Li, Y. J. Zhang, J. S. Gu, and Y. L. Gu. 2013. “Photochemical Degradation of Ciprofloxacin in UV and UV/H2O2 Process: Kinetics, Parameters, and Products.” Environmental Science and Pollution Research International 20 (5): 3202–3213. doi:10.1007/s11356-012-1229-x.
  • Haddad, T., and K. Kümmerer. 2014. “Characterization of Photo-Transformation Products of the Antibiotic Drug Ciprofloxacin with Liquid Chromatography-Tandem Mass Spectrometry in Combination with Accurate Mass Determination Using an LTQ-Orbitrap.” Chemosphere 115: 40–46. doi:10.1016/j.chemosphere.2014.02.013.
  • Hensen, B., O. Olsson, and K. Kümmerer. 2019. “The Role of Irradiation Source Setups and Indirect Phototransformation: Kinetic Aspects and the Formation of Transformation Products of Weakly Sunlight-Absorbing Pesticides.” The Science of the Total Environment 695: 133808. doi:10.1016/j.scitotenv.2019.133808.
  • Huang, L., L. Li, W. Dong, Y. Liu, and H. Hou. 2008. “Removal of Ammonia by OH Radical in Aqueous Phase.” Environmental Science & Technology 42 (21): 8070–8075. doi:10.1021/es8008216.
  • Hubicka, U., P. Zmudzki, P. Talik, B. Zuromska-Witek, and J. Krzek. 2013. “Photodegradation Assessment of Ciprofloxacin, Moxifloxacin, Norfloxacin and Ofloxacin in the Presence of Excipients from Tablets by UPLC-MS/MS and DSC.” Chemistry Central Journal 7: 133. doi:10.1186/1752-153X-7-133.
  • Jones, O. A., N. Voulvoulis, and J. N. Lester. 2001. “Human Pharmaceuticals in the Aquatic Environment a Review.” Environmental technology 22 (12): 1383–1394. doi:10.1080/09593332208618186.
  • Khan, P. M., K. Roy, and E. Benfenati. 2019. “Chemometric Modeling of Daphnia Magna Toxicity of Agrochemicals.” Chemosphere 224: 470–479. doi:10.1016/j.chemosphere.2019.02.147.
  • Kotthoff, L., S. L. O'Callaghan, J. Lisec, T. Schwerdtle, and M. Koch. 2020. “Structural Annotation of Electro- and Photochemically Generated Transformation Products of Moxidectin Using High-Resolution Mass Spectrometry.” Analytical and Bioanalytical Chemistry 412 (13): 3141–3152. doi:10.1007/s00216-020-02572-1.
  • Kugelmann, E., C. R. Albert, G. Bringmann, and U. Holzgrabe. 2011. “Fenton’s Oxidation: A Tool for the Investigation of Potential Drug Metabolites.” Journal of Pharmaceutical and Biomedical Analysis 54 (5): 1047–1058. doi:10.1016/j.jpba.2010.12.016.
  • Kümmerer, K. 2009. “Antibiotics in the Aquatic Environment - A Review - Part I.” Chemosphere 75 (4): 417–434. doi:10.1016/j.chemosphere.2008.11.086.
  • Leifer, A. 1988. The Kinetics of Environmental Aquatic Photochemistry: Theory and Practice. Washington, DC: American Chemical Society.
  • Lester, Y., D. Avisar, I. Gozlan, and H. Mamane. 2011. “Removal of Pharmaceuticals Using Combination of UV/H2O 2/O3 Advanced Oxidation Process.” Water science and Technology : A Journal of the International Association on Water Pollution Research 64 (11): 2230–2238. doi:10.2166/wst.2011.079.
  • Liu, C., V. Nanaboina, G. V. Korshin, and W. Jiang. 2012. “Spectroscopic Study of Degradation Products of Ciprofloxacin, Norfloxacin and Lomefloxacin Formed in Ozonated Wastewater.” Water Research 46 (16): 5235–5246. doi:10.1016/j.watres.2012.07.005.
  • Luo, X., X. Wei, J. Chen, Q. Xie, X. Yang, and W. J. G. M. Peijnenburg. 2019. “Rate Constants of Hydroxyl Radicals Reaction with Different Dissociation Species of Fluoroquinolones and Sulfonamides: Combined Experimental and QSAR Studies.” Water Research 166: 115083. doi:10.1016/j.watres.2019.115083.
  • Luo, Y., W. Guo, H. H. Ngo, L. D. Nghiem, F. I. Hai, J. Zhang, S. Liang, and X. C. Wang. 2014. “A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment.” The Science of the Total Environment 473–474: 619–641. doi:10.1016/j.scitotenv.2013.12.065.
  • Mazellier, P., L. Méité, and J. De Laat. 2008. “Photodegradation of the Steroid Hormones 17beta-Estradiol (E2) and 17alpha-Ethinylestradiol (EE2) in Dilute Aqueous Solution.” Chemosphere 73 (8): 1216–1223. doi:10.1016/j.chemosphere.2008.07.046.
  • Meader, V. K., M. G. John, L. M. Batista, S. Ahsan, and K. Moore Tibbetts. 2018. “Radical Chemistry in a Femtosecond Laser Plasma: Photochemical Reduction of Ag + in Liquid Ammonia Solution.” Molecules 23 (3): 532. doi:10.3390/molecules23030532.
  • Montagner, C. C., F. F. Sodré, R. D. Acayaba, C. Vidal, I. Campestrini, M. A. Locatelli, I. C. Pescara, A. F. Albuquerque, G. A. Umbuzeiro, and W. F. Jardim. 2019. “Ten Years-Snapshot of the Occurrence of Emerging Contaminants in Drinking, Surface and Ground Waters and Wastewaters from São Paulo State, Brazil.” Journal of the Brazilian Chemical Society 30 (3): 614–632. doi:10.21577/0103-5053.20180232.
  • Múčka, V., P. Bláha, V. Čuba, and J. Červenák. 2013. “Influence of Various Scavengers of •OH Radicals on the Radiation Sensitivity of Yeast and Bacteria.” International Journal of Radiation Biology 89 (12): 1045–1052. doi:10.3109/09553002.2013.817702.
  • Paul, T., M. C. Dodd, and T. J. Strathmann. 2010. “Photolytic and Photocatalytic Decomposition of Aqueous Ciprofloxacin: Transformation Products and Residual Antibacterial Activity.” Water Research 44 (10): 3121–3132. doi:10.1016/j.watres.2010.03.002.
  • Piir, G., I. Kahn, A. T. García-Sosa, S. Sild, P. Ahte, and U. Maran. 2018. “Best Practices for QSAR Model Reporting: Physical and Chemical Properties, Ecotoxicity, Environmental Fate, Human Health, and Toxicokinetics Endpoints.” Environmental Health Perspectives 126 (12): 1–20. doi:10.1289/EHP3264.
  • Porras, J., C. Bedoya, J. Silva-Agredo, A. Santamaría, R. A. Torres-Palma, and J. J. Fern. 2016. “Role of Humic Substances in the Degradation Pathways and Residual Antibacterial Activity during the Photodecomposition of the Antibiotic Cipro Fl Oxacin in Water.” Water Research 94: 1–9. doi:10.1016/j.watres.2016.02.024.
  • Prieto, A., M. Möder, R. Rodil, L. Adrian, and E. Marco-Urrea. 2011. “Degradation of the Antibiotics Norfloxacin and Ciprofloxacin by a White-Rot Fungus and Identification of Degradation Products.” Bioresource Technology 102 (23): 10987–10995. doi:10.1016/j.biortech.2011.08.055.
  • Qiang, Z., and C. Adams. 2004. “Potentiometric Determination of Acid Dissociation Constants (PK a) for Human and Veterinary Antibiotics.” Water Research 38 (12): 2874–2890. doi:10.1016/j.watres.2004.03.017.
  • Rubirola, A., M. R. Boleda, M. T. Galceran, and E. Moyano. 2019. “Formation of New Disinfection by-Products of Priority Substances (Directive 2013/39/UE and Watch List) in Drinking Water Treatment.” Environmental Science and Pollution Research International 26 (27): 28270–28283. doi:10.1007/s11356-019-06018-9.
  • Salma, A., S. Thoröe-Boveleth, T. C. Schmidt, and J. Tuerk. 2016. “Dependence of Transformation Product Formation on PH during Photolytic and Photocatalytic Degradation of Ciprofloxacin.” Journal of Hazardous Materials 313: 49–59. doi:10.1016/j.jhazmat.2016.03.010.
  • Sturini, M., A. Speltini, F. Maraschi, A. Profumo, L. Pretali, E. Aitziber Irastorza, E. Fasani, and A. Albini. 2012. “Photolytic and Photocatalytic Degradation of Fluoroquinolones in Untreated River Water Under Natural Sunlight.” Applied Catalysis B: Environmental 119–120: 32–39. doi:10.1016/j.apcatb.2012.02.008.
  • Sturini, M., A. Speltini, F. Maraschi, L. Pretali, A. Profumo, E. Fasani, and A. Albini. 2014. “Environmental Photochemistry of Fluoroquinolones in Soil and in Aqueous Soil Suspensions Under Solar Light.” Environmental Science and Pollution Research International 21 (23): 13215–13221. doi:10.1007/s11356-013-2124-9.
  • Sui, Q., X. Cao, S. Lu, W. Zhao, Z. Qiu, and G. Yu. 2015. “Occurrence, Sources and Fate of Pharmaceuticals and Personal Care Products in the Groundwater: A Review.” Emerging Contaminants 1 (1): 14–24. doi:10.1016/j.emcon.2015.07.001.
  • Torniainen, K., C. P. Askolin, and J. Mattinen. 1997. “Isolation and Structure Elucidation of an Intermediate in the Photodegradation of Ciprofloxacin.” Journal of Pharmaceutical and Biomedical Analysis 16 (3): 439–445. doi:10.1016/S0731-7085(97)00076-9.
  • Vasconcelos, T. G., D. M. Henriques, A. König, A. F. Martins, and K. Kümmerer. 2009. “Photo-Degradation of the Antimicrobial Ciprofloxacin at High PH: Identification and Biodegradability Assessment of the Primary by-Products.” Chemosphere 76 (4): 487–493. doi:10.1016/j.chemosphere.2009.03.022.
  • Voigt, M., A. Wirtz, K. Hoffmann-Jacobsen, and M. Jaeger. 2020. “Prior Art for the Development of a Fourth Purification Stage in Wastewater Treatment Plant for the Elimination of Anthropogenic Micropollutants-a Short-Review.” AIMS Environmental Science 7 (1): 69–98. doi:10.3934/environsci.2020005.
  • Voigt, M., and M. Jaeger. 2021. “Structure and QSAR Analysis of Photoinduced Transformation Products of Neonicotinoids from EU Watchlist for Ecotoxicological Assessment.” The Science of the Total Environment 751: 141634. doi:10.1016/j.scitotenv.2020.141634.
  • Voigt, M., B. Hentschel, N. Theiss, C. Savelsberg, I. Bartels, A. Nickisch-Hartfiel, and M. Jaeger. 2020. “Lomefloxacin—Occurrence in the German River Erft, Its Photo-Induced Elimination, and Assessment of Ecotoxicity.” Clean Technologies 2 (1): 74–90. doi:10.3390/cleantechnol2010006.
  • Voigt, M., C. Savelsberg, and M. Jaeger. 2018. “Identification of Pharmaceuticals in the Aquatic Environment Using HPLC-ESI-Q-TOF-MS and Elimination of Erythromycin through Photo-Induced Degradation.” Journal of Visualized Experiments no. 138: 57434. doi:10.3791/57434.
  • Voigt, M., I. Bartels, A. Nickisch-Hartfiel, and M. Jaeger. 2017. “Photoinduced Degradation of Sulfonamides, Kinetic, and Structural Characterization of Transformation Products and Assessment of Environmental Toxicity.” Toxicological & Environmental Chemistry 99 (9–10): 1304–1327. doi:10.1080/02772248.2017.1373777.
  • Voigt, M., I. Bartels, A. Nickisch-Hartfiel, and M. Jaeger. 2019. “Determination of Minimum Inhibitory Concentration and Half Maximal Inhibitory Concentration of Antibiotics and Their Degradation Products to Assess the Eco-Toxicological Potential.” Toxicological and Environmental Chemistry 101 (3–6): 315–338. doi:10.1080/02772248.2019.1687706.
  • Wu, Q., Z. Que, Z. Li, S. Chen, W. Zhang, K. Yin, and H. Hong. 2018. “Photodegradation of Ciprofloxacin Adsorbed in the Intracrystalline Space of Montmorillonite.” Journal of Hazardous Materials 359: 414–420. doi:10.1016/j.jhazmat.2018.07.041.
  • Zhang, Y., J. Zhang, Y. Xiao, V. W. C. Chang, and T. T. Lim. 2017. “Direct and Indirect Photodegradation Pathways of Cytostatic Drugs Under UV Germicidal Irradiation: Process Kinetics and Influences of Water Matrix Species and Oxidant Dosing.” Journal of Hazardous Materials 324 (Pt B): 481–488. doi:10.1016/j.jhazmat.2016.11.016.
  • Zhou, Z., and J. Q. Jiang. 2015. “Reaction Kinetics and Oxidation Products Formation in the Degradation of Ciprofloxacin and Ibuprofen by Ferrate (VI).” Chemosphere 119: S95–S100. doi:10.1016/j.chemosphere.2014.04.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.