168
Views
1
CrossRef citations to date
0
Altmetric
Environmental Chemistry/Technology

Bioaccumulation of trace metal(loid)s and toxic response of Lactuca sativa grown in shooting range soil

, &
Pages 28-41 | Received 25 Sep 2021, Accepted 30 Mar 2023, Published online: 20 Apr 2023

References

  • Ahmad, M., S. S. Lee, D. H. Moon, J. E. Yang, and Y. S. Ok. 2012. “A Review of Environmental Contamination and Remediation Strategies for Heavy Metals at Shooting Range Soils.” In Environmental Protection Strategies for Sustainable Development, edited by A. Malik and E. Grohmann, 437–451. Springer. doi:10.1007/978-94-007-1591-2_14/COVER.
  • Ahmad, M., S. S. Lee, J. E. Yang, H. M. Ro, Y. H. Lee, and Y. S. Ok. 2012. “Effects of Soil Dilution and Amendments (Mussel Shell, Cow Bone, and Biochar) on Pb Availability and Phytotoxicity in Military Shooting Range Soil.” Ecotoxicology and Environmental Safety 79: 225–231. doi:10.1016/j.ecoenv.2012.01.003.
  • Ainsworth, N., J. A. Cooke, and M. S. Johnson. 1990. “Distribution of Antimony in Contaminated Grassland: 1—Vegetation and Soils.” Environmental Pollution 65 (1): 65–77. doi:10.1016/0269-7491(90)90165-9.
  • Bai, J., and X. Zhao. 2020. “Ecological and Human Health Risks of Heavy Metals in Shooting Range Soils: A Meta Assessment from China.” Toxics 8 (2): 32. doi:10.3390/toxics8020032.
  • Barker, A. J., L. E. Mayhew, T. A. Douglas, A. G. Ilgen, and T. P. Trainor. 2020. “Lead and Antimony Speciation Associated with the Weathering of Bullets in a Historic Shooting Range in Alaska.” Chemical Geology 553: 119797. doi:10.1016/j.chemgeo.2020.119797.
  • Baroni, F., A. Boscagli, G. Protano, and F. Riccobono. 2000. “Antimony Accumulation in Achillea Ageratum, Plantago Lanceolata and Silene Vulgaris Growing in an Old Sb-mining Area.” Environmental Pollution 109 (2): 347–352. doi:10.1016/S0269-7491(99)00240-7.
  • Česynaitė, J., M. Praspaliauskas, N. Pedišius, and G. Sujetovienė. 2021. “Biological Assessment of Contaminated Shooting Range Soil Using Earthworm Biomarkers.” Ecotoxicology (London, England) 30 (10): 2024–2035. doi:10.10.1007/s10646-021-02463-w.
  • Christou, A., E. Hadjisterkotis, P. Dalias, E. Demetriou, M. Christofidou, S. Kozakou, N. Michael, et al. 2022. “Lead Contamination of Soils, Sediments, and Vegetation in a Shooting Range and Adjacent Terrestrial and Aquatic Ecosystems: A Holistic Approach for Evaluating Potential Risks.” Chemosphere 292: 133424. doi:10.1016/j.chemosphere.2021.133424.
  • Conesa, H. M., M. Wieser, B. Studer, and R. Schulin. 2011. “Effects of Vegetation and Fertilizer on Metal and Sb Plant Uptake in a Calcareous Shooting Range Soil.” Ecological Engineering 37 (4): 654–658. doi:10.1016/j.ecoleng.2010.11.001.
  • D’Angelo, E., J. Crutchfield, and M. Vandiviere. 2001. “Rapid, Sensitive, Microscale Determination of Phosphate in Water and Soil.” Journal of Environmental Quality 30 (6): 2206–2209. doi:10.2134/JEQ2001.2206.
  • Dermatas, D., and M. Chrysochoou. 2007. “Lead Particle Size and Its Association with Firing Conditions and Range Maintenance: Implications for Treatment.” Environmental Geochemistry and Health 29 (4): 347–355. doi:10.1007/S10653-007-9092-2.
  • Dinake, P., O. Maphane, K. Sebogisi, and O. Kamwi. 2018. “Pollution Status of Shooting Range Soils from Cd, Cu, Mn, Ni and Zn Found in Ammunition.” Cogent Environmental Science 4 (1): 1528701. doi:10.1080/23311843.2018.1528701.
  • Dinake, P., S. M. Mokgosi, R. Kelebemang, T. T. Kereeditse, and O. Motswetia. 2022. “Pollution Assessment of Antimony in Shooting Range Soils.” South African Journal of Chemistry 76: 72–78. doi:10.17159/0379-4350/2022/v76a11.
  • Dinake, P., S. M. Mokgosi, R. Kelebemang, T. T. Kereeditse, and O. Motswetla. 2021. “Pollution Risk from Pb towards Vegetation Growing in and around Shooting Ranges – A Review.” Environmental Pollutants and Bioavailability 33 (1): 88–103. doi:10.1080/26395940.2021.1920467.
  • Eissa, M. A., and O. E. Negim. 2018. “Heavy Metals Uptake and Translocation by Lettuce and Spinach Grown on a Metal-contaminated Soil.” Journal of Soil Science and Plant Nutrition 18 (ahead): 0–0. doi:10.4067/S0718-95162018005003101.
  • Etim, E. U., and P. C. Onianwa. 2012. “Lead Contamination of Soil in the Vicinity of a Military Shooting Range in Ibadan, Nigeria.” Toxicological & Environmental Chemistry 94 (5): 895–905. doi:10.1080/02772248.2012.678997.
  • Evangelou, M. W. H., K. Hockmann, R. Pokharel, A. Jakob, and R. Schulin. 2012. “Accumulation of Sb, Pb, Cu, Zn and Cd by Various Plants Species on Two Different Relocated Military Shooting Range Soils.” Journal of Environmental Management 108: 102–107. doi:10.1016/J.JENVMAN.2012.04.044.
  • Fayiga, A. O., and U. K. Saha. 2016. “Soil Pollution at Outdoor Shooting Ranges: Health Effects, Bioavailability and Best Management Practices.” Environmental Pollution 216: 135–145. doi:10.1016/j.envpol.2016.05.062.
  • Ginn, B. R., J. S. Szymanowski, and J. B. Fein. 2008. “Metal and Proton Binding onto the Roots of Fescue Rubra.” Chemical Geology 253 (3-4): 130–135. doi:10.1016/j.chemgeo.2008.05.001.
  • Gul, I., M. Manzoor, J. Kallerhoff, and M. Arshad. 2020. “Enhanced Phytoremediation of Lead by Soil Applied Organic and Inorganic Amendments: Pb Phytoavailability, Accumulation and Metal Recovery.” Chemosphere 258: 127405. doi:10.1016/j.chemosphere.2020.127405.
  • Gupta, D. K., H. G. Huang, X. E. Yang, B. H. N. Razafindrabe, and M. Inouhe. 2010. “The Detoxification of Lead in Sedum Alfredii H. Is Not Related to Phytochelatins but the Glutathione.” Journal of Hazardous Materials 177 (1-3): 437–444. doi:10.1016/J.JHAZMAT.2009.12.052.
  • HN 60-2004. 2004. “Lithuanian Hygienic Norm HN 60:2004. Maximum Permitted Concentrations of Hazardous Substances in Soil (in Lithuanian).” Valstybės Žinios : 41–1357.
  • Hockmann, K., S. Tandy, B. Studer, M. W. H. Evangelou, and R. Schulin. 2018. “Plant Uptake and Availability of Antimony, Lead, Copper and Zinc in Oxic and Reduced Shooting Range Soil.” Environmental Pollution 238: 255–262. doi:10.1016/J.ENVPOL.2018.03.014.
  • Jordão, C. P., L. L. Fialho, P. R. Cecon, A. T. Matos, J. C. L. Neves, E. S. Mendonça, and R. L. F. Fontes. 2006. “Effects of Cu, Ni and Zn on Lettuce Grown in Metal-enriched Vermicompost Amended Soil.” Water, Air, and Soil Pollution 172 (1-4): 21–38. doi:10.1007/s11270-005-9030-9.
  • Khan, A. Z., S. Khan, S. Muhammad, S. A. Baig, A. Khan, M. J. Nasir, M. Azhar, and A. Naz. 2021. “Lead Contamination in Shooting Range Soils and Its Phytoremediation in Pakistan: A Greenhouse Experiment.” Arabian Journal of Geosciences 14 (1): 1–7. doi:10.1007/S12517-020-06301-X/TABLES/5.
  • Kumar, P. B., V. Dushenkov, H. Motto, and I. Raskin. 1995. “Phytoextraction: The Use of Plants to Remove Heavy Metals from Soils.” Environmental Science & Technology 29 (5): 1232–1238. doi:10.1021/es00005a014.
  • Kumarathilaka, Prasanna, Mahtab Ahmad, Indika Herath, Kushani Mahatantila, B. C. L. Athapattu, Jörg Rinklebe, Yong Sik Ok, et al. 2018. “Influence of Bioenergy Waste Biochar on Proton- and Ligand-promoted Release of Pb and Cu in a Shooting Range Soil.” The Science of the Total Environment 625: 547–554. doi:10.1016/j.scitotenv.2017.12.294.
  • Lago-Vila, M., A. Rodríguez-Seijo, F. A. Vega, and D. Arenas-Lago. 2019. “Phytotoxicity Assays with Hydroxyapatite Nanoparticles Lead the Way to Recover Firing Range Soils.” The Science of the Total Environment 690: 1151–1161. doi:10.1016/J.SCITOTENV.2019.06.496.
  • Lewińska, K., and A. Karczewska. 2019. “A Release of Toxic Elements from Military Shooting Range Soils as Affected by PH and Treatment with Compost.” Geoderma 346: 1–10. doi:10.1016/j.geoderma.2019.03.031.
  • Mateo, R., N. Vallverdú-Coll, A. López-Antia, M. A. Taggart, M. Martínez-Haro, R. Guitart, and M. E. Ortiz-Santaliestra. 2014. “Reducing Pb Poisoning in Birds and Pb Exposure in Game Meat Consumers: The Dual Benefit of Effective Pb Shot Regulation.” Environment International 63: 163–168. doi:10.1016/J.ENVINT.2013.11.006.
  • Meyers, D. E. R., G. J. Auchterlonie, R. I. Webb, and B. Wood. 2008. “Uptake and Localisation of Lead in the Root System of Brassica juncea.” Environmental Pollution 153 (2): 323–332. doi:10.1016/J.ENVPOL.2007.08.029.
  • Moreira, I. N., L. L. Martins, and M. P. Mourato. 2020. “Effect of Cd, Cr, Cu, Mn, Ni, Pb and Zn on Seed Germination and Seedling Growth of Two Lettuce Cultivars (Lactuca sativa L.).” Plant Physiology Reports 25 (2): 347–358. doi:10.1007/s40502-020-00509-5.
  • Mubarak, H., L. Y. Chai, N. Mirza, Z. H. Yang, A. Pervez, M. Tariq, S. Shaheen, and Q. Mahmood. 2015. “Antimony (Sb) – Pollution and Removal Techniques – Critical Assessment of Technologies.” Toxicological & Environmental Chemistry 97 (10): 1296–1318. doi:10.1080/02772248.2015.1095549.
  • OECD (Organisation for Economic Co-operation and Development). 2006. “OECD Test Guideline 208: Terrestrial Plant Test - Seedling Emergence and Seedling Growth Test.” Guidelines for the Testing of Chemicals, Terrestrial Plant Test Seedling Emergence and Seedling Growth Test 227: 1–21. http://www.oecd-ilibrary.org/environment/test-no-208-terrestrial-plant-test-seedling-emergence-and-seedling-growth-test_9789264070066-en.
  • Piechalak, A., B. Tomaszewska, D. Baralkiewicz, and A. Malecka. 2002. “Accumulation and Detoxification of Lead Ions in Legumes.” Phytochemistry 60 (2): 153–162. doi:10.1016/S0031-9422(02)00067-5.
  • Rantalainen, M. L., M. Torkkeli, R. Strömmer, and H. Setälä. 2006. “Lead Contamination of an Old Shooting Range Affecting the Local Ecosystem—A Case Study with a Holistic Approach.” The Science of the Total Environment 369 (1-3): 99–108. doi:10.1016/j.scitotenv.2006.05.005.
  • Rodríguez-Seijo, A., M. C. Alfaya, M. L. Andrade, and Flora A. Vega. 2016. “Copper, Chromium, Nickel, Lead and Zinc Levels and Pollution Degree in Firing Range Soils.” Land Degradation & Development 27 (7): 1721–1730. doi:10.1002/ldr.2497.
  • Rodríguez-Seijo, A., A. Cachada, A. Gavina, A. C. Duarte, F. A. Vega, M. L. Andrade, and R. Pereira. 2017. “Lead and PAHs Contamination of an Old Shooting Range: A Case Study with a Holistic Approach.” The Science of the Total Environment 575: 367–377. doi:10.1016/j.scitotenv.2016.10.018.
  • Rodríguez-Seijo, A., M. Lago-Vila, M. L. Andrade, and F. A. Vega. 2016. “Pb Pollution in Soils from a Trap Shooting Range and the Phytoremediation Ability of Agrostis capillaris L.” Environmental Science and Pollution Research 23 (2): 1312–1323. doi:10.1007/s11356-015-5340-7.
  • Sanderson, P., 2008. “Ecotoxicological Testing of Lead Contaminated Soil using a Multispecies Soil System.” A Thesis. University of South Australia.
  • Sanderson, P., R. Naidu, and N. Bolan. 2014. “Ecotoxicity of Chemically Stabilised Metal(Loid)s in Shooting Range Soils.” Ecotoxicology and Environmental Safety 100: 201–208. doi:10.1016/j.ecoenv.2013.11.003.
  • Sanderson, P., F. Qi, B. Seshadri, A. Wijayawardena, and R. Naidu. 2018. “Contamination, Fate and Management of Metals in Shooting Range Soils—A Review.” Current Pollution Reports 4 (2): 175–187. doi:10.1007/s40726-018-0089-5.
  • Shtangeeva, I., R. Bali, and A. Harris. 2011. “Bioavailability and Toxicity of Antimony.” Journal of Geochemical Exploration 110 (1): 40–45. doi:10.1016/j.gexplo.2010.07.003.
  • Sneddon, J., R. Clemente, P. Riby, and N. W. Lepp. 2009. “Source-pathway-receptor Investigation of the Fate of Trace Elements Derived from Shotgun Pellets Discharged in Terrestrial Ecosystems Managed for Game Shooting.” Environmental Pollution 157 (10): 2663–2669. doi:10.1016/j.envpol.2009.05.004.
  • Sujetovienė, G., and J. Česynaitė. 2019. “Assessment of Toxicity to Earthworm Eisenia fetida of Lead Contaminated Shooting Range Soils with Different Properties.” Bulletin of Environmental Contamination and Toxicology 103 (4): 559–564. doi:10.1007/s00128-019-02695-x.
  • Sun, L., J. Yang, H. Fang, C. Xu, C. Peng, H. Huang, L. Lu, D. Duan, X. Zhang, and J. Shi. 2017. “Mechanism Study of Sulfur Fertilization Mediating Copper Translocation and Biotransformation in Rice (Oryza sativa L.) Plants.” Environmental Pollution 226: 426–434. doi:10.1016/j.envpol.2017.03.080.
  • Uzu, G., S. Sobanska, Y. Aliouane, P. Pradere, and C. Dumat. 2009. “Study of Lead Phytoavailability for Atmospheric Industrial Micronic and Sub-micronic Particles in Relation with Lead Speciation.” Environmental Pollution 157 (4): 1178–1185. doi:10.1016/j.envpol.2008.09.053.
  • Vidya, C. S. N., R. Shetty, M. Vaculíková, and M. Vaculík. 2022. “Antimony Toxicity in Soils and Plants, and Mechanisms of Its Alleviation.” Environmental and Experimental Botany 202: 104996. doi:10.1016/j.envexpbot.2022.104996.
  • Wolf, D. C., Z. Cryder, R. Khoury, C. Carlan, and J. Gan. 2020. “Bioremediation of PAH-contaminated Shooting Range Soil Using Integrated Approaches.” The Science of the Total Environment 726: 138440. doi:10.1016/j.scitotenv.2020.138440.
  • Yazdi, M., M. Kolahi, E. M. Kazemi, and A. G. Barnaby. 2019. “Study of the Contamination Rate and Change in Growth Features of Lettuce (Lactuca sativa Linn.) in Response to Cadmium and a Survey of Its Phytochelatin Synthase Gene.” Ecotoxicology and Environmental Safety 180: 295–308. doi:10.1016/j.ecoenv.2019.04.071.
  • Zahra, N., M. B. Hafeez, K. Shaukat, A. Wahid, and M. Hasanuzzaman. 2021. “Fe Toxicity in Plants: Impacts and Remediation.” Physiologia Plantarum 173 (1): 201–222. doi:10.1111/PPL.13361.
  • Zhang, Y., H. Zhang, Z. Zhang, Ch. Liu, C. Sun, W. Zhang, and T. Marhaba. 2018. “pH Effect on Heavy Metal Release from a Polluted Sediment.” Journal of Chemistry 7597640: 1–7. doi:10.1155/2018/7597640.
  • Zhao, J., C. Lu, M. Tariq, Q. Xiao, W. Zhang, K. Huang, Q. Lu, K. Lin, and Z. Liu. 2019. “The Response and Tolerance Mechanisms of Lettuce (Lactuca sativa L.) Exposed to Nickel in a Spiked Soil System.” Chemosphere 222: 399–406. doi:10.1016/j.chemosphere.2019.01.119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.