96
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Improved reducing sugars production from enzymatic hydrolysis of rubber wood by surfactant-assisted hydrothermal pretreatment

, , , , , & show all

References

  • Gollakota, A. R. K.; Kishore, N.; Gu, S. A Review on Hydrothermal Liquefaction of Biomass. Renew. Sust. Energy Rev. 2018, 81, 1378–1392. DOI: 10.1016/j.rser.2017.05.178.
  • Muharja, M.; Umam, D. K.; Pertiwi, D.; Zuhdan, J.; Nurtono, T.; Widjaja, A. Enhancement of Sugar Production from Coconut Husk Based on the Impact of the Combination of Surfactant-Assisted Subcritical Water and Enzymatic Hydrolysis. Bioresour. Technol. 2019, 274, 89–96. DOI: 10.1016/j.biortech.2018.11.074.
  • Yan, X.; Li, D.; Ma, X.; Li, J. Bioconversion of Renewable Lignocellulosic Biomass into Multicomponent Substrate via Pressurized Hot Water Pretreatment for Bioplastic Polyhydroxyalkanoate Accumulation. Bioresour. Technol. 2021, 339, 125667. 125667. DOI: 10.1016/j.biortech.2021.125667.
  • Manzanares, P. The Role of Biorefinering Research in the Development of a Modern Bioeconomy. Acta Innov. 2020, 37, 47–56. DOI: 10.32933/ActaInnovations.37.4.
  • Fatriasari, W.; Ulwan, W.; Aminingsih, T.; Sari, F.P.; Suryanegara, L.; Iswanto, A. H.; Ghozali, M.; Kholida, L. N.; Hussin, M. H.; Fudholi, A.; Hermiati, E.; Fitria. Optimization of Maleic Acid Pretreatment of Oil Palm Empty Fruit Bunches (OPEFB) Using Response Surface Methodology to Produce Reducing Sugars. Ind. Crops Prod., . 2021, 171, 113971. DOI: 10.1016/j.indcrop.2021.113971.
  • Martins, J. R.; Schmatz, A. A.; Salazar-Bryan, A. M.; Brienzo, M. Effect of Dilute Acid Pretreatment on the Sugarcane Leaf for Fermentable Sugars Production. Sugar. Tech. 2022, 24, 1540–1550. DOI: 10.1007/s12355-021-01106-y.
  • Yildirim, O.; Ozkaya, B.; Altinbas, M.; Demir, A. Statistical Optimization of Dilute Acid Pretreatment of Lignocellulosic Biomass by Response Surface Methodology to Obtain Fermentable Sugars for Bioethanol Production. Int. J. Energy Res. 2021, 45, 8882–8899. DOI: 10.1002/er.6423.
  • Marcela, S. P.; Rosa, M.; Michele, M.; Héctor, A. Enhancement and Modeling of Enzymatic Hydrolysis on Cellulose from Agave Bagasse Hydrothermally Pretreated in a Horizontal Bioreactor. Carbohydr. Polym. 2019, 211, 349–359.
  • Yin, F.; Li, D.; Ma, X.; Zhang, C. Pretreatment of Lignocellulosic Feedstock to Produce Fermentable Sugars for Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Production Using Activated Sludge. Bioresour. Technol. 2019, 290, 121773. 121773. DOI: 10.1016/j.biortech.2019.121773.
  • An, H. E.; Lee, K. H.; Jang, Y. W.; Kim, C. B.; Yoo, H. Y. Improved Glucose Recovery from Sicyos Angulatus by NaOH Pretreatment and Application to Bioethanol Production. Processes. 2021, 9, 245. DOI: 10.3390/pr9020245.
  • Li, Y.; Sun, Z.; Ge, X.; Zhang, J. Effects of Lignin and Surfactant on Adsorption and Hydrolysis of Cellulases on Cellulose. Biotechnol. Biofuels. 2016, 9, 20. DOI: 10.1186/s13068-016-0434-0.
  • Anahita, D.; Kasiviswanathan, M.; William, G. Enzyme Recycling in a Simultaneous and Separate Saccharification and Fermentation of Corn Stover: A Comparison between the Effect of Polymeric Micelles of Surfactants and Polypeptides. Biores. Technol. 2013, 132, 202–209.
  • Zheng, T.; Jiang, J.; Yao, J. Surfactant-Promoted Hydrolysis of Lignocellulose for Ethanol Production. Fuel Process. Technol. 2021, 213, 106660. DOI: 10.1016/j.fuproc.2020.106660.
  • Sindhu, R.; Kuttiraja, M.; Elizabeth, P.; Vani, S.; Sukumaran, R.; Binod, P. A Novel Surfactant-Assisted Ultrasound Pretreatment of Sugarcane Tops for Improved Enzymatic Release of Sugars. Bioresour. Technol. 2013, 135, 67–72. DOI: 10.1016/j.biortech.2012.09.050.
  • Cheng, X.; Luo, Y.; Gao, Y.; Li, S.; Xu, C.; Tang, S.; Yang, Y.; Zhang, Z.; Jiang, H.; Xu, H.; et al. Surfactant-Assisted Alkaline Pretreatment and Enzymatic Hydrolysis of Miscanthus Sinensis for Enhancing Sugar Recovery with a Reducing Enzyme Loading. Front Bioeng. Biotech. 2022, 10, 918126.
  • Wang, J.; Xiao, W.; Zhang, J.; Quan, X.; Chu, J.; Meng, X.; Pu, Y.; Ragauskas, A. J. Beneficial Effect of Surfactant in Adsorption/Desorption of Lignocellulose-Degrading Enzymes on/from Lignin with Different Structure. Ind. Crops Prod 2023, 191, 115904. DOI: 10.1016/j.indcrop.2022.115904.
  • Ballesteros, I.; Oliva, J. M.; Carrasco, J.; Cabañas, A.; Navarro, A. A.; Ballesteros, M. Effect of Surfactants and Zeolites on Simultaneous Saccharification and Fermentation of Steam-Exploded Poplar Biomass to Ethanol. Appl. Biochem. Biotechnol. 1998, 70-72, 369–381. DOI: 10.1007/BF02920152.
  • Sun, D.; Yang, Q.; Wang, Y.; Gao, H.; He, M.; Lin, X.; Lu, J.; Wang, Y.; Kang, H.; Alam, A.; et al. Distinct Mechanisms of Enzymatic Saccharification and Bioethanol Conversion Enhancement by Three Surfactants under Steam Explosion and Mild Chemical Pretreatments in Bioenergy Miscanthus. Ind. Crops Prod 2020, 153, 112559. DOI: 10.1016/j.indcrop.2020.112559.
  • Kumar, N.; Mittal, M.; Yadav, A.; Saini, D. K.; Aggarwal, N. K. Statistical Optimization of Enzymatic Saccharification of Sodium Hydroxide Pretreated Parthenium Hysterophorus Biomass Using Response Surface Methodology. J. Wood Chem. Technol. 2023, 43, 1–12. DOI: 10.1080/02773813.2022.2145312.
  • da Costa Lopes, A. M.; Lins, R. M. G.; Rebelo, R. A.; Łukasik, R. M. Biorefinery Approach for Lignocellulosic Biomass Valorisation with Acidic Ionic Liquid. Green Chem. 2018, 20, 4043–4057. DOI: 10.1039/C8GC01763H.
  • Kumar, N.; Mittal, M.; Aggarwal, N. K.; Yadav, A. Evaluation of Autoclave Assisted Sulfuric-Acid-Catalyzed Pretreatments for the Liberation of Reducing Sugars from Parthenium Hysterophorus: A Response Surface Approach. Int. J. Sustain. Energy. 2022, 41, 1591–1603. DOI: 10.1080/14786451.2022.2067161.
  • Segal, L.; Creely, J. J.; Martin, A. E.; Conrad, C. M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text Res. J. 1959, 29, 786–794. DOI: 10.1177/004051755902901003.
  • Potumarthi, R.; Baadhe, R. R.; Pisipati, A.; Jetty, A. Reducing Sugars Production from Corncobs: A Comparative Study of Chemical and Biotechnological Methods. Appl. Biochem. Biotechnol. 2014, 174, 2162–2170. DOI: 10.1007/s12010-014-1073-1.
  • Charnnok, B.; Sawangkeaw, R.; Chaiprapat, S. Integrated Process for the Production of Fermentable Sugar and Methane from Rubber Wood. Bioresour. Technol. 2020, 302, 122785. 122785. DOI: 10.1016/j.biortech.2020.122785.
  • Kassanov, B.; Wang, J.; Fu, Y.; Chang, J. Cellulose Enzymatic Saccharification and Preparation of 5-Hydroxymethylfurfural Based on Bamboo Hydrolysis Residue Separation in Ionic Liquids. RSC Adv. 2017, 7, 30755–30762. DOI: 10.1039/C7RA05020H.
  • Kang, X.; Wang, Y.-Y.; Wang, S.; Song, X. Xylan and Xylose Decomposition during Hot Water Pre-Extraction: A pH-Regulated Hydrolysis. Carbohydr. Polym. 2021, 255, 117391. DOI: 10.1016/j.carbpol.2020.117391.
  • Rachmah, A. N. L.; Fatmawati, A.; Widjaja, A. Impact of Surfactant-Aided Subcritical Water Pretreatment Process Conditions on the Reducing Sugar Production from Oil Palm Empty Fruit Bunch. IOP Conf. Ser: Earth Environ. Sci. 2022, 963, 012005. DOI: 10.1088/1755-1315/963/1/012005.
  • Chen, W.-H.; Pen, B.-L.; Yu, C.-T.; Hwang, W.-S. Pretreatment Efficiency and Structural Characterization of Rice Straw by an Integrated Process of Dilute-Acid and Steam Explosion for Bioethanol Production. Bioresour. Technol. 2011, 102, 2916–2924. DOI: 10.1016/j.biortech.2010.11.052.
  • Yang, M.; Kuittinen, S.; Zhang, J.; Keinänen, M.; Pappinen, A. Effect of Dilute Acid Pretreatment on the Conversion of Barley Straw with Grains to Fermentable Sugars. Bioresour. Technol. 2013, 146, 444–450. DOI: 10.1016/j.biortech.2013.07.107.
  • Agrawal, R.; Verma, A.; Singhania, R. R.; Varjani, S.; Di Dong, C.; Kumar Patel, A. Current Understanding of the Inhibition Factors and Their Mechanism of Action for the Lignocellulosic Biomass Hydrolysis. Bioresour. Technol. 2021, 332, 125042. DOI: 10.1016/j.biortech.2021.125042.
  • An, X.; Zhang, R.; Liu, L.; Yang, J.; Tian, Z.; Yang, G.; Cao, H.; Cheng, Z.; Ni, Y.; Liu, H. Ozone Pretreatment Facilitating Cellulase Hydrolysis of Unbleached Bamboo Pulp for Improved Fiber Flexibility. Ind. Crops Prod. 2022, 178, 114577. DOI: 10.1016/j.indcrop.2022.114577.
  • Kumar Saini, Jitendra, Kaur, Amanjot, Mathur, Aayush, Himanshu, Hemansi,. Strategies to Enhance Enzymatic Hydrolysis of Lignocellulosic Biomass for Biorefinery Applications: A Review. Bioresour Technol 2022, 360, 127517. DOI: 10.1016/j.biortech.2022.127517.
  • Xiao, L.; Ding, Y.; Yan, G. Effect of Hot-Pressing Temperature on Characteristics of Alkali Pretreated Reed Straw Bio-Board. J. Wood Chem. Technol. 2021, 41, 160–168. DOI: 10.1080/02773813.2021.1949351.
  • Cao, T.; Jiang, B.; Gu, F.; Wu, W.; Jin, Y. Effects of Green Liquor (GL) and Sodium Carbonate (SC) Pretreatment on Structural Characteristics of Wheat Stem Lignin. J. Wood Chem. Technol. 2018, 38, 159–169. DOI: 10.1080/02773813.2017.1388821.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.