166
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Morphological classification of fine particles in transmission electron microscopy images by using pre-trained convolution neural networks

ORCID Icon, , , & ORCID Icon
Pages 657-666 | Received 23 Nov 2023, Accepted 12 Feb 2024, Published online: 08 Mar 2024

References

  • Adachi, K., Oshima, N. Gong, Z. De Sá, S. Bateman, A. P Martin, S. T. De Brito, J. F. Artaxo, P. Cirino, G. G. Iii, A, J. S, et al. 2020. Mixing states of Amazon basin aerosol particles transported over long distances using transmission electron microscopy. Atmos. Chem. Phys. 20 (20):11923–39. doi: 10.5194/acp-20-11923-2020.
  • Cao, L., Y. Lu, C. Li, and W. Yang. 2019. automatic segmentation of pathological glomerular basement membrane in transmission electron microscopy images with random Forest Stacks. Comput. Math. Methods Med. 2019:1684218–1. doi: 10.1155/2019/1684218.
  • Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. SMOTE: Synthetic minority over-sampling technique. Jair. 16:321–57. doi: 10.1613/jair.953.
  • DeCarlo, P. F., J. G. Slowik, D. R. Worsnop, P. Davidovits, and J. L. Jimenez. 2004. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Sci. Technol. 38 (12):1185–205. doi: 10.1080/027868290903907.
  • DeCost, B. L., T. Francis, and E. A. Holm. 2017. Exploring the microstructure manifold: Image texture representations applied to ultrahigh carbon steel microstructures. Acta Mater. 133:30–40. doi: 10.1016/j.actamat.2017.05.014.
  • Deng, Q., L. Deng, Y. Miao, X. Guo, and Y. Li. 2019. Particle deposition in the human lung: Health implications of particulate matter from different sources. Environ. Res. 169:237–45. doi: 10.1016/j.envres.2018.11.014.
  • Haffner-Staton, E., L. Avanzini, A. La Rocca, S. A. Pfau, and A. Cairns. 2022. Automated particle recognition for engine soot nanoparticles. J. Microsc. 288 (1):28–39. doi: 10.1111/jmi.13140.
  • He, K., X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–8. IEEE. doi: 10.1109/CVPR.2016.90.
  • Howard, A., M. Sandler, B. Chen, W. Wang, L. C. Chen, M. Tan, G. Chu, V. Vasudevan, Y. Zhu, R. Pang, et al. 2019. Searching for mobileNetV3. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, South Korea, October 27–November 02, ed. L. O’Conner, 1314–1324. NJ: IEEE. doi: 10.1109/ICCV.2019.00140.
  • Huang, G. L., L. Z Van Der Maaten, and K. Q. Weinberger. 2017. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, July 21–26, ed. L. O’Conner, 2261–9. NJ: IEEE. doi: 10.1109/CVPR.2017.243.
  • Iwata, H., Y. Hayashi, A. Hasegawa, K. Terayama, and Y. Okuno. 2022. Classification of scanning electron microscope images of pharmaceutical excipients using deep convolutional neural networks with transfer learning. Int. J. Pharm. X 4:100135. doi: 10.1016/j.ijpx.2022.100135.
  • Kandel, I., and M. Castelli. 2020. The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset. ICT Express 6 (4):312–5. doi: 10.1016/j.icte.2020.04.010.
  • Kitahara, A. R., and E. A. Holm. 2018. microstructure cluster analysis with transfer learning and unsupervised Learning. Integr. Mater. Manuf. Innov. 7 (3):148–56. doi: 10.1007/s40192-018-0116-9.
  • Koyama, K., M. Tanaka, B. H. Cho, Y. Yoshikawa, and S. Koseki. 2021. Predicting sensory evaluation of spinach freshness using machine learning model and digital images. PLoS One. 16 (3):e0248769. doi: 10.1371/journal.pone.0248769.
  • Kwak, N., H. Lee, H. Maeng, A. Seo, K. Lee, S. Kim, M. Lee, J. W. Cha, B. Shin, and K. Park. 2022. Morphological and chemical classification of fine particles over the Yellow Sea during spring, 2015–2018. Environ. Pollut. 305:119286. doi: 10.1016/j.envpol.2022.119286.
  • Lu, W. Z., and W. J. Wang. 2005. Potential assessment of the “support vector machine” method in forecasting ambient air pollutant trends. Chemosphere 59 (5):693–701. doi: 10.1016/j.chemosphere.2004.10.032.
  • Luo, Q., E. A. Holm, and C. Wang. 2021. A transfer learning approach for improved classification of carbon nanomaterials from TEM images. Nanoscale Adv. 3 (1):206–13. doi: 10.1039/d0na00634c.
  • Maskey, S., H. Chae, K. Lee, N. P. Dan, T. T. Khoi, and K. Park. 2016. Morphological and elemental properties of urban aerosols among PM events and different traffic systems. J. Hazard. Mater. 317:108–18. doi: 10.1016/j.jhazmat.2016.05.058.
  • Merikanto, J., D. V. Spracklen, G. W. Mann, S. J. Pickering, and K. S. Carslaw. 2009. Impact of nucleation on global CCN. Atmos. Chem. Phys. 9 (21):8601–16. doi: 10.5194/acp-9-8601-2009.
  • Park, K., J. Y. Park, J. H. Kwak, G. N. Cho, and J. S. Kim. 2008. Seasonal and diurnal variations of ultrafine particle concentration in urban Gwangju, Korea: Observation of ultrafine particle events. Atmos. Environ. 42 (4):788–99. doi: 10.1016/j.atmosenv.2007.09.068.
  • Park, M., H. S. Joo, K. Lee, M. Jang, S. D. Kim, I. Kim, L. J. S. Borlaza, H. Lim, H. Shin, K. H. Chung, et al. 2018. Differential toxicities of fine particulate matters from various sources. Sci. Rep. 8 (1):17007. doi: 10.1038/s41598-018-35398-0.
  • Pope, C. A., and D. W. Dockery. 2006. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 56 (6):709–42. doi: 10.1080/10473289.2006.10464485.
  • Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. 2017. Grad-CAM: visual explanations from deep networks via gradient-based localization. In 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, October 22–29, ed. L. O’Conner, 618–26. NJ: IEEE. doi: 10.1109/ICCV.2017.74.
  • Seo, I., K. Lee, M. S. Bae, M. Park, S. Maskey, A. Seo, L. J. S. Borlaza, E. M. R. Cosep, and K. Park. 2020. Comparison of physical and chemical characteristics and oxidative potential of fine particles emitted from rice straw and pine stem burning. Environ. Pollut. 267:115599. doi: 10.1016/J.ENVPOL.2020.115599.
  • Shinde, R. K., M. S. Alam, M. B. Hossain, S. Md Imtiaz, J. H. Kim, A. A. Padwal, and N. Kim. 2023. Squeeze MNet: precise skin cancer detection model for low computing Iot devices using transfer learning. Cancers.15 (1):1–12. doi: 10.3390/cancers15010012.
  • Simonyan, K., and A. Zisserman. 2015. Very deep convolutional networks for large-scale image recognition. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, eds. Y. Bengio and Y. LeCun. ICLR.
  • Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. 2016. Rethinking the Inception Architecture for Computer Vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)., Las Vegas, NV, USA, June 27–30, ed. L. O’Conner, 2818–26. NJ: IEEE. doi: 10.1109/CVPR.2016.308.
  • Touloupas, G., A. Lauber, J. Henneberger, A. Beck, and A. Lucchi. 2020. A convolutional neural network for classifying cloud particles recorded by imaging probes. Atmos. Meas. Tech. 13 (5):2219–39. doi: 10.5194/amt-13-2219-2020.
  • Wong, S. C., A. Gatt, V. Stamatescu, and M. D. McDonnell. 2016. Understanding Data Augmentation for Classification: When to Warp?. In 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, QLD, Australia, November–December 02, ed. L. O’Conner, 1–16. NJ: IEEE. doi: 10.1109/DICTA.2016.7797091.
  • Yin, C., X. Cheng, X. Liu, and M. Zhao. 2020. Identification and classification of atmospheric particles based on SEM images using convolutional neural network with attention mechanism. Complexity 2020:1–13. doi: 10.1155/2020/9673724.
  • Yu, Y., H. Liu, M. Fu, J. Chen, X. Wang, and K. Wang. 2021. A two-branch neural network for non-homogeneous dehazing via ensemble learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, June 9–25, ed. L. O’Conner, 193–202. NJ: IEEE. doi: 10.1109/CVPRW53098.2021.00028.
  • Zhang, R., C. Liu, G. Zhou, J. Sun, N. Liu, P.-C. Hsu, H. Wang, Y. Qiu, J. Zhao, T. Wu, et al. 2018. Morphology and property investigation of primary particulate matter particles from different sources. Nano Res. 11 (6):3182–92. doi: 10.1007/s12274-017-1724-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.