1,650
Views
6
CrossRef citations to date
0
Altmetric
Original Articles: BiGART 2021 Issue

MRI-based automatic segmentation of rectal cancer using 2D U-Net on two independent cohorts

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 255-263 | Received 27 Jun 2021, Accepted 21 Oct 2021, Published online: 17 Dec 2021

References

  • Trebeschi S, van Griethuysen JJM, Lambregts DMJ, et al. Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR. Sci Rep. 2017;7(1):5301.
  • Irving B, Franklin JM, Papież BW, et al. Pieces-of-parts for supervoxel segmentation with global context: application to DCE-MRI tumour delineation. Med Image Anal. 2016;32:69–83.
  • Hearn N, Bugg W, Chan A, et al. Manual and semi-automated delineation of locally advanced rectal cancer subvolumes with diffusion-weighted MRI. Br J Radiol. 2020;93(1114):20200543.
  • Malayeri AA, El Khouli RH, Zaheer A, et al. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics. 2011;31(6):1773–1791.
  • Keller DS, Berho M, Perez RO, et al. The multidisciplinary management of rectal cancer. Nat Rev Gastroenterol Hepatol. 2020;17(7):414–429.
  • Wang J, Lu J, Qin G, et al. Technical note: a deep learning-based autosegmentation of rectal tumors in MR images. Med Phys. 2018;45(6):2560–2564.
  • Jian J, Xiong F, Xia W, et al. Fully convolutional networks (FCNs)-based segmentation method for colorectal tumors on T2-weighted magnetic resonance images. Australas Phys Eng Sci Med. 2018;41(2):393–401.
  • Huang Y-J, Dou Q, Wang Z-X, et al., editors. HL-FCN: hybrid loss guided FCN for colorectal cancer segmentation. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018); 2018 Apr 4-7; Washington, DC. IEEE; 2018.
  • Wang M, Xie P, Ran Z, et al. Full convolutional network based multiple side-output fusion architecture for the segmentation of rectal tumors in magnetic resonance images: a multi-vendor study. Med Phys. 2019;46(6):2659–2668.
  • Dueland S, Ree AH, Grøholt KK, et al. Oxaliplatin-containing preoperative therapy in locally advanced rectal cancer: local response, toxicity and long-term outcome. Clin Oncol. 2016;28(8):532–539.
  • Bakke KM, Grovik E, Meltzer S, et al. Comparison of intravoxel incoherent motion imaging and multiecho dynamic contrast-based MRI in rectal cancer. J Magn Reson Imaging. 2019;50(4):1114–1124.
  • Bakke KM, Meltzer S, Grovik E, et al. Sex differences and tumor blood flow from dynamic susceptibility contrast MRI are associated with treatment response after chemoradiation and long-term survival in rectal cancer. Radiology. 2020;297(2):352–360.
  • Seierstad T, Hole KH, Groholt KK, et al. MRI volumetry for prediction of tumour response to neoadjuvant chemotherapy followed by chemoradiotherapy in locally advanced rectal cancer. Brit J Radiol. 2015;88(1051):20150097.
  • Van Rossum G, Drake FL. Python 3 reference manual. Scotts Valley, CA: CreateSpace; 2009.
  • Van Der Walt S, Schönberger JL, Nunez-Iglesias J, Scikit-Image Contributors, et al. Scikit-image: image processing in python. PeerJ. 2014;2:e453.
  • Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. J Machine Learn Res. 2011;12:2825–2830.
  • Yaniv Z, Lowekamp BC, Johnson HJ, et al. SimpleITK image-analysis notebooks: a collaborative environment for education and reproducible research. J Digit Imaging. 2018;31(3):290–303.
  • Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, et al., editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Lecture Notes in Computer Science, Vol. 9351. Cham: Springer; 2015. DOI:https://doi.org/10.1007/978-3-319-24574-4_28
  • Milletari F, Navab N, Ahmadi S-A, editors. V-Net: fully convolutional neural networks for volumetric medical image segmentation 2016. 4th International Conference on 3D Vision (3DV); 25-28 Oct 2016; Stanford, CA. IEEE; 2016. p. 19. DOI:https://doi.org/10.1109/3DV.2016.79
  • Knuth F. GitHub repository knuth_2021_mri; 2021 [2021-20-21]. Available from: https://github.com/Medical-Radiation-Physics-NTNU/knuth_2021_mri.
  • Huynh BN. deoxys – Framework for running deep-learning experiments with emphasis on cancer tumor auto-segmentation; 2021 [2021-06-21]. Available from: https://pypi.org/project/deoxys/.
  • Sorensen TA. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol Skar. 1948;5:1–34.
  • Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc. 1937;32(200):675–701.
  • Nemenyi PB. Distribution-free multiple comparisons. Princeton (NJ): Princeton University; 1963.
  • Virtanen P, Gommers R, Oliphant TE, SciPy 1.0 Contributors, et al. SciPy 1.0: fundamental algorithms for scientific computing in python. Nat Methods. 2020;17(3):261–272.
  • Terpilowski MA. Scikit-posthocs: pairwise multiple comparison tests in python. JOSS. 2019;4(36):1169.
  • Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9(3):90–95.
  • Reinke A, Eisenmann M, Tizabi MD, et al. Common limitations of image processing metrics: a picture story. 2021. Available from: https://arxiv.org/abs/2104.05642
  • He K, Zhang X, Ren S, et al., editors. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016 Jun 27-30; Las Vegas, NV. IEEE; 2016. DOI:https://doi.org/10.1109/CVPR.2016.90
  • Huang G, Liu Z, Van Der Maaten L, et al., editors. Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition; 2017 Jul 21-26; Honolulu, HI. IEEE; 2017. DOI:https://doi.org/10.1109/CVPR.2017.243
  • Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205–216.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.