196
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Cathepsins B and L Increased during Response of Periodontal Ligament Cells to Mechanical Stress In Vitro

, , , , , & show all
Pages 181-189 | Published online: 06 Aug 2009

REFERENCES

  • Davidovitch Z., Nicolay O. R., Ngan P. W., Shanfeld J. L.. 1988. Neurotransmitters, cytokines, and the control of alveolar bone remodeling in orthodontics. Dent. Clin. Am.. 32: 411–435
  • Shimizu N., Ogura N., Yamaguchi M., Goseki T., Shibata Y., Abiko Y., Iwasawa T., Takiguchi H.. 1992. Stimulation by interleukin-1 of interleukin-6 production by human periodontal ligament cells. Arch. Oral Biol.. 37: 743–748. [PUBMED], [INFOTRIEVE], [CROSSREF]
  • van der, Pauw M. T., Van den, Bos T., Everts V., Beertsen W.. 2001. Phagocytosis of fibronectin and collagens type I, III, and V by human gingival and periodontal ligament fibroblasts in vitro. J. Periodontol.. 72: 1340–1347. [PUBMED], [INFOTRIEVE]
  • Nakaya H., Oates T. W., Hoang A. M., Kamoi K., Cochran D. L.. 1997. Effects of interleukin-1 beta on matrix metalloproteinase-3 levels in human periodontal ligament cells. J. Periodontol.. 68: 517–523. [PUBMED], [INFOTRIEVE]
  • Bolcato-Bellemin A. L., Elkaim R., Abehsera A., Fausser J. L., Haikel Y., Tenenbaum H.. 2000. Expression of mRNAs encoding for alpha and beta integrin subunits, MMPs, and TIMPs in stretched human periodontal ligament and gingival fibroblasts. J. Dent. Res.. 79: 1712–1716. [PUBMED], [INFOTRIEVE]
  • Palmon A., Roos H., Edel J., Zax B., Savion N., Grosskop A., Pitaru S.. 2000. Inverse dose- and time-dependent effect of basic fibroblast growth factor on the gene expression of collagen type I and matrix metalloproteinase-1 by periodontal ligament cells in culture. J. Period.. 71: 974–980
  • Chang Y. C., Yang S. F., Lai C. C., Liu J. Y., Hsieh Y. S.. 2002. Regulation of matrix metalloproteinase production by cytokines, pharmacological agents and periodontal pathogens in human periodontal ligament fibroblast cultures. J. Period. Res.. 37: 196–203. [CROSSREF]
  • Everts V., van der, Zee E., Creemers L., Beertsen W.. 1996. Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling. Histochem. J.. 28: 229–245. [PUBMED], [INFOTRIEVE]
  • Creemers L. B., Hoeben K. A., Jansen D. C., Buttle D. J., Beertsen W., Everts V.. 1998. Participation of intracellular cysteine proteinases, in particular cathepsin B, in degradation of collagen in periosteal tissue explants. Matrix Biol.. 16: 575–584. [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Eeckhout Y., Vaes G.. 1977. Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Biochem. J.. 166: 21–31. [PUBMED], [INFOTRIEVE]
  • Etherington D. J.. 1976. Bovine spleen cathepsin B1 and collagenolytic cathepsin. A comparative study of the properties of the two enzymes in the degradation of native collagen. Biochem. J.. 153: 199–209. [PUBMED], [INFOTRIEVE]
  • Katunuma N., Matsunaga Y., Matsui A., Kakegawa H., Endo K., Inubushi T., Saibara T., Ohba Y., Kakiuchi T.. 1998. Novel physiological functions of cathepsins B and L on antigen processing and osteoclastic bone resorption. Adv. Enzyme Reg.. 38: 235–251. [CROSSREF]
  • Etherington D. J., Taylor M. A., Henderson B.. 1988. Elevation of cathepsin L levels in the synovial lining of rabbits with antigen-induced arthritis. Br. J. Exp. Pathol.. 69: 281–289. [PUBMED], [INFOTRIEVE]
  • Maciewicz R. A., Etherington D. J.. 1988. A comparison of four cathepsins (B, L, N and S) with collagenolytic activity from rabbit spleen. Biochem. J.. 256: 433–440. [PUBMED], [INFOTRIEVE]
  • Wang H. M.. 1982. Detection of lysosomal enzymes derived from pig periodontal ligament fibroblasts and their ability to digest collagen fibrils and proteoglycan. Arch. Oral Biol.. 27: 715–720. [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Goseki T., Shimizu N., Iwasawa T., Takiguchi H., Abiko Y.. 1996. Effects of in vitro cellular aging on alkaline phosphatase, cathepsin activities and collagen secretion of human periodontal ligament derived cells. Mech. Aging Dev.. 91: 171–183. [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Redlich M., Roos H., Reichenberg E., Zaks B., Grosskop A., Bar, Kana I., Pitaru S., Palmon A.. 2004. The effect of centrifugal force on mRNA levels of collagenase, collagen type-I, tissue inhibitors of metalloproteinases and beta-actin in cultured human periodontal ligament fibroblasts. J. Period. Res.. 39: 27–32. [CROSSREF]
  • Yamaguchi M., Shimizu N., Ozawa Y., Saito K., Miura S., Takiguchi H., Iwasawa T., Abiko Y.. 1997. Effect of tension-force on plasminogen activator activity from human periodontal ligament cells. J. Period. Res.. 32: 308–314
  • Somerman M. J., Archer S. Y., Imm G. R., Foster R. A.. 1988. A comparative study of human periodontal ligament cells and gingival fibroblasts in vitro. J. Dent. Res.. 67: 66–70. [PUBMED], [INFOTRIEVE]
  • Yamaguchi M., Shimizu N., Goseki T., Shibata Y., Takiguchi H., Iwasawa T., Abiko Y.. 1994. Effect of different magnitudes of tension force on prostaglandin E2 production by human periodontal ligament cells. Arch. Oral Biol.. 39: 877–884. [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kanai K., Nohara H., Hanada K.. 1992. Initial effects of continuously applied compressive stress to human periodontal ligament fibroblasts. J. Jpn. Orthod. Soc.. 51: 153–163
  • Kanzaki H., Chiba M., Shimizu Y., Mitani H.. 2002. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kB ligand up-regulation via prostaglandin E2 synthesis. J. Bone Miner. Res.. 17: 210–220. [PUBMED], [INFOTRIEVE]
  • Watanabe K., Saito I., Hanada K.. 1998. Effects of conditioned medium of continuously compressed human periodontal ligament fibroblasts on MC3T3-E1. J. Jpn. Orthod. Soc.. 57: 173–179
  • Ngan P., Saito S., Saito M., Lanese R., Shanfeld J., Davidovitch Z.. 1990. The interactive effects of mechanical stress and interleukin-1 beta on prostaglandin E and cyclic AMP production in human periodontal ligament fibroblasts in vitro: Comparison with cloned osteoblastic cells of mouse (MC3T3-E1). Arch. Oral Biol.. 35: 717–725. [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Andersen K. L., Pedersen E. H., Melsen B.. 1991. Material parameters and stress profiles within the periodontal ligament. Am. J. Orthod. Dentofacial Orthop.. 99: 427–440. [PUBMED], [INFOTRIEVE]
  • Norton L. A., Andersen K. L., Arenholt-Bindslev D., Melsen B.. 1992. Simulated orthodontic strain applied to human PDL using an in vitro model. The Biological Mechanism of Tooth Movement and Craniofacial Adaption,, Davidovitch Z., pp. 211–220, Columbus, Ohio, Ohio State University College of Dentistry
  • Basdra E. K., Papavassiliou A. G., Huber L. A.. 1995. Rab and rho GTPases are involved in specific response of periodontal ligament fibroblasts to mechanical stretching. Biochim. Biophys. Acta. 1268: 209–213. [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Yamada H., Nishimura F., Naruishi K., Chou H. H., Takashiba S., Albright G. M., Nares S., Iacopino A. M., Murayama Y.. 2000. Phenytoin and cyclosporin A suppress the expression of MMP-1, TIMP-1, and cathepsin L, but not cathepsin B in cultured gingival fibroblasts. J. Period.. 71: 955–960
  • Tokunaga K., Nakamura Y., Sakata K., Fujimori K., Ohkubo M., Swada K., Sakiyama S.. 1987. Enhanced expression of a glyceraldehyde-3-phosphate dehydrogenase gene in human lung cancers. Cancer Res.. 47: 5616–5619. [PUBMED], [INFOTRIEVE]
  • Trabandt A., Muller-Ladner U., Kriegsmann J., Gay R. E., Gay S.. 1995. Expression of proteolytic cathepsins B, D, and L in periodontal gingival fibroblasts and tissues. Lab. Invest.. 73: 205–212. [PUBMED], [INFOTRIEVE]
  • Kunimatsu K., Ozaki Y., Hara Y., Aoki Y., Yamamoto K., Kato I.. 1997. Immunohistochemical study of cathepsin G and medullasin in inflamed gingival tissues from periodontal patients. J. Period. Res.. 32: 264–270
  • Takeyama M., Irie K., Nakamura H., Kominami E., Hanada K., Ozawa H., Ejiri S.. 2001. Immunohistochemical demonstration of cathepsin B and L in the periodontal ligament (PDL) of the rat molar. Jpn. J. Oral Biol.. 43: 194–202
  • Nogimura-Otsuka A.. 2004. Localization of cathepsin B and L in rat periodontal tissues during experimental tooth movement. Int. J. Oral Med. Sci.. 3: 1–9
  • Sugiyama Y., Yamaguchi M., Kanekawa M., Yoshii M., Nozoe T., Nogimura A., Kasai K.. 2003. The level of cathepsin B in gingival crevicular fluid during human orthodontic tooth movement. Eur. J. Orthod.. 25: 71–76. [PUBMED], [INFOTRIEVE]
  • Nozoe T., Yamaguchi M., Nogimura A., Aihara N., Kojima T., Kasai K.. 2002. The level of cathepsin L in gingival crevicular fluid during orthodontic tooth movement and effect of tension-force on cathepsin L activity from periodontal ligament cells. Orthod. Waves. 61: 447–453
  • Jin G., Sah R. L., Li Y. S., Lotz M., Shyy J. Y., Chien S.. 2000. Biomechanical regulation of matrix metalloproteinase-9 in cultured chondrocytes. J. Orthop. Res.. 18: 899–908. [PUBMED], [INFOTRIEVE]
  • Sun H. B., Yokota H.. 2001. Altered mRNA level of matrix metalloproteinase-13 in MH7A synovial cells under mechanical loading and unloading. Bone. 28: 399–403. [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Cunnane G., FitzGerald O., Hummel K. M., Gay R. E., Gay S., Bresnihan B.. 1999. Collagenase, cathepsin B and cathepsin L gene expression in the synovial membrane of patients with early inflammatory arthritis. Rheumatology (Oxford). 38: 34–42. [CROSSREF]
  • Uusitalo H., Hiltunen A., Soderstrom M., Aro H. T., Vuorio E.. 2000. Expression of cathepsins B, H, K, L, and S and matrix metalloproteinases 9 and 13 during chondrocyte hypertrophy and endochondral ossification in mouse fracture callus. Calcif. Tissue Int.. 67: 382–390. [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Duncan G. W., Yen E. H., Pritchard E. T., Suga D. M.. 1984. Collagen and prostaglandin synthesis in force-stressed periodontal ligament in vitro. J. Dent. Res.. 63: 665–669. [PUBMED], [INFOTRIEVE]
  • Bumann A., Carvalho R. S., Schwarzer C. L., Yen E. H.. 1997. Collagen synthesis from human PDL cells following orthodontic tooth movement. Eur. J. Orthod.. 19: 29–37. [PUBMED], [INFOTRIEVE]
  • Howard P. S., Kucich U., Taliwal R., Korostoff J. M.. 1998. Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J. Period. Res.. 33: 500–508
  • Klein-Nulend J., Veldhuijzen J. P., Burger E. H.. 1986. Increased calcification of growth plate cartilage as a result of compressive force in vitro. Arthritis Rheum.. 29: 1002–1009. [PUBMED], [INFOTRIEVE]
  • Klein-Nulend J., Veldhuijzen J. P., de, Jong M., Burger E. H.. 1987. Increased bone formation and decreased bone resorption in fetal mouse calvaria as a result of intermittent compressive force in vitro. Bone Miner.. 2: 441–448. [PUBMED], [INFOTRIEVE]
  • Ozawa H., Imamura K., Abe E., Takahashi N., Hiraide T., Shibasaki Y., Fukuhara T., Suda T.. 1990. Effect of a continuously applied compressive pressure on mouse osteoblast-like cells (MC3T3-E1) in vitro. J. Cell Physiol.. 142: 177–185. [PUBMED], [INFOTRIEVE]
  • Hasegawa S., Sato S., Saito S., Suzuki Y., Brunette D. M.. 1985. Mechanical stretching increases the number of cultured bone cells synthesizing DNA and alters their pattern of protein synthesis. Calcif. Tissue Int.. 37: 431–436. [PUBMED], [INFOTRIEVE]
  • Saito M., Saito S., Ngan P. W., Shanfeld J., Davidovitch Z.. 1991. Interleukin 1 beta and prostaglandin E are involved in the response of periodontal cells to mechanical stress in vivo and in vitro. Am. J. Orthod. Dentofacial Orthop.. 99: 226–240. [PUBMED], [INFOTRIEVE]
  • Naruse K., Yamada T., Sai X. R., Hamaguchi M., Sokabe M.. 1998. Pp125FAK is required for stretch dependent morphological response of endothelial cells. Oncogene. 17: 455–463. [PUBMED], [INFOTRIEVE], [CROSSREF]
  • He Y., Macarak E. J., Korostoff J. M., Howard P. S.. 2004. Compression and tension: Differential effects on matrix accumulation by periodontal ligament fibroblasts in vitro. Connect. Tissue Res.. 45: 28–39. [PUBMED], [INFOTRIEVE], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.