292
Views
18
CrossRef citations to date
0
Altmetric
Original

FGF2 Alters Expression of the Pyrophosphate/Phosphate Regulating Proteins, PC-1, ANK and TNAP, in the Calvarial Osteoblastic Cell Line, MC3T3E1(C4)

, , , &
Pages 184-192 | Received 18 Apr 2005, Accepted 28 Jun 2005, Published online: 06 Aug 2009

REFERENCES

  • Moerlooze L. D., Dickson C. Skeletal disorders associated with fibroblast growth factor receptor mutations. Curr. Op. Gen. Dev. 1997; 7: 378–385, [CSA]
  • Ornitz D. M., Marie P. J. FGF Signaling in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002; 16: 1446–1465, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Marie P. J. Fibroblast growth factor signaling controlling osteoblast differentiation. Gene 2003; 316: 23–32, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Register T. C., Wuthier R. E. The effect of pyrophosphate and two diphosphonates on 45Ca and 32Pi uptake and mineralization by matrix vesicle-enriched fractions and by hydroxyapatite. Bone 1985; 6: 307–312, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Anderson H. C., Sipe J. B., Hessle L., Dhamyamraju R., Atti E., Camacho N. P., Millan J. L. Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. Am. J. Path. 2004; 164: 841–847, [PUBMED], [INFOTRIEVE], [CSA]
  • Terkeltaub R., Rosenbach M., Fong F., Goding J. Causal link between nucleotide pyrophosphohydrolase over activity and increased intracellular inorganic pyrophosphate generation demonstrated by transfection of cultured fibroblasts and osteoblasts with plasma cell membrane glyoprotein-1. Arthrit. Rheum. 1994; 37: 934–941, [CSA]
  • Fleisch H., Straumann F., Schenk R., Bisaz S., Allgower M. Effect of condensed phosphates on calcification of chick embryo femurs in tissue culture. Am. J. Physiol. 1966; 211: 821–825, [PUBMED], [INFOTRIEVE], [CSA]
  • Johnson K., Moffa A., Chen Y., Prizker K., Goding J., Terkeltaub R. Matrix vesicle plasma cell membrane glycoprotein-1 regulates mineralization by murine osteoblastic MC3T3 cells. J. Bone Min. Res. 1999; 14: 883–892, [CSA]
  • Johnson K. A., Hessle L., Vaingankar S., Wennerg C., Mauro S., Narisawa S., Goding J. W., Sano K., Millan J. L., Terkeltaub R. Osteoblast tissue-nonspecific alkaline phosphatase antagonizs and regulates PC-1. Am. J. Physiol. Int. Comp. Physiol. 2000; 279: 1365–R1377, [CSA]
  • Hessle L., Johnson K. A., Anderson H. C., Narisawa S., Sali A., Goding J. W., Terkeltaub R., Millan J. L. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Nat. Acad. Sci. 2002; 99: 9445–9449, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Johnson K., Goding J., Van Etten D., Sali A., Hu S., Farley D., Krug H., Hessle L., Millan J. L., Terkeltaub R. Linked deficiencies in extracellular PPi and osteopontin mediate pathologic calcification associated with defective PC-1 and ANK expression. J. Bone Min. Res. 2003; 18: 994–1004, [CSA]
  • Johnson K., Hashimoto S., Lotz M., Pritzker K., Goding J., Terkeltaub R. Up-regulated expression of the phosphodiesterase nucleotide pyrophosphatase family member PC-1 is a marker and pathogenic factor for knee meniscal cartilage matrix calcification. Arthritis Rheum. 2001; 44: 1071–1081, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Solan J. L., Deftos L. J., Goding J. W., Terkeltaub R. A. Expression of the nucleoside triphosphate pyrophosphohydrolase PC-1 is induced by basic fibroblast growth factor (bFGF) and modulated by activation of the protein kinase A and C pathways in osteoblast-like osteosarcoma cells. J. Bone Min. Res. 1996; 11: 183–192, [CSA]
  • Terkeltaub R. A., Johnson K., Rohnow D., Goomer R., Burton D., Deftos L. J. Bone morphogenetic proteins and bFGF exert opposing regulatory effects on PTHrP expression and inorganic pyrophosphate elaboration in immortalized murine endochondral hypertrophic chondrocytes (MCT cells). J. Bone Min. Res. 1998; 13: 931–941, [CSA]
  • Wennberg C., Hessle L., Lundberg P., Mauro S., Narisawa S., Lerner U. H., Millan J. L. Functional chracterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J. Bone Min. Res. 2000; 15: 1879–1888, [CSA]
  • Fedde K. N., Blair L., Silverstein J., Coburn S. P., Ryan L. M., Weinstein R. S., Waymire K., Narisawa S., Millan J. L., Macgregor G. R., Whyte M. P. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J. Bone Min. Res. 1999; 14: 2015–2026, [CSA]
  • Reyes-Botella C., Ballecillo-Capilla M. F., Ruiz C. Effect of different growth factors on human cultured osteoblast-like cells. Cell Physiol. Biochem. 2002; 12: 353–358, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Pereira R. C., Exonomides A. M., Canalis E. Bone morphogenetic proteins induce gremlin, a protein that limits their activity in osteoblasts. Endocrinology 2000; 141: 4558–4563, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Walsh S., Jefferiss C., Stewart K., Jordan G. R., Screen J., Beresford J. M. Expression of the developmental markers STRO-1 and alkaline phosphatase in cultures of human marrow stromal cells: regulation by fibroblast growth factor (FGF)-2 and relationship to the expression of FGF receptors 1-4. Bone 2000; 27: 185–195, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Mansukhani A., Bellosta P., Sahni M., Basilico C. Signaling by fibroblast growth factors (FGF) and fibroblast growth factor receptor 2 (FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts. J. Bone Min. Res. 2000; 149: 1297–1308, [CSA]
  • Debiais F., Hott M., Graulet A. M., Marie P. J. The effects of fibroblast growth factor-2 on human neonatal calvarial osteoblastic cells are differentiation stage specific. J. Bone Min. Res. 1998; 13: 645–654, [CSA]
  • Pendleton A., Johnson M. D., Hughe S A., Gurley K. A., Ho A. M., Doherty M., Dixey J., Gillet P., Loeuille D., McGrath R., Reginato A., Shiang R., Wright G., Netter P., Williams C., Kingsley D. M. Mutations in ANKH cause chondrocalcinosis. Am. J. Hum. Gen. 2002; 71: 933–940, [CSA], [CROSSREF]
  • Reichenberger E., Tiziani V., Watanabe S., Park L., Ueki Y., Santanne C., Baur S. T., Shiang R., Grange D. K., Beighton B., Garner J., Hamersma H., Sellars S., Ramesar R., Lidral A. S., Raposo do Amaral C. M., Gorlin R. J., Mulliken J. B., Olsen B. R. Autosomal dominant craniometaphyseal dysplasia is caused by mutations in the transmembrane protein ANK. Am. J. Hum. Gen. 2001; 68: 1321–1326, [CSA], [CROSSREF]
  • Nurnberg P., Thiele H., Chandler D., Hohne W., Cunningham M. L., Ritter H., Leschik G., Uhlmann K., Mischung C., Harrop K., Goldblatt J., Borochowitz Z. U., Kotzot D., Westermann F., Mundlos S., Braun H., Laing N., Tinschert S. Heterozygous mutations in ANKH, the human ortholog of the mouse progressive ankylosis gene, result in craniometaphyseal dysplasia. Nat. Gen. 2001; 28: 37–41, [CSA], [CROSSREF]
  • Ho A. M., Johnson M. D., Kingsley D. M. Role of the mouse ank gene in control of tissue calcification and arthritis. Science 2000; 289: 265–270, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Sohn P., Crowley M., Slattery E., Serra R. Developmental and TGF-β mediated regulation of Ank mRNA expression in cartilage and bone. Osteoarthr. Cart. 2002; 10: 482–490, [CSA], [CROSSREF]
  • Guo Y., Hsu D., Sheau-Line Y. F., Richards C. M., Winkles J. A. Polypeptide growth factors and phorbol ester induce progressive ankylosis (ank) gene expression in murine and human fibroblasts. J. Cell Biochem. 2002; 84: 27–38, [CSA], [CROSSREF]
  • Choi J., Lee B., Song K., Park R., Kim I., Sohn K., Jo J., Ryoo H. Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3-E1 cells. J. Cell. Biochem. 1996; 61: 609–618, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Sudo H., Kodama H., Amagai Y., Yamamoto S., Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell. Bio. 1983; 96: 191–198, [CSA], [CROSSREF]
  • Wang D., Christensen K., Chawla K., Xiao G., Krebsbach P., Franceschi R. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Min. Res. 1999; 14: 893–903, [CSA]
  • Locklin R. M., Khosla S., Turner R. T., Biggs B. L. Mediators of the biphasic response of bone to intermittent and continuously administered parathyroid hormone. J. Cell. Biochem. 2003; 89: 180–190, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Hughes F. J., Collyer J., Stanfield M., Goodman S. A. The effects of bone morphogenetic protein-2,-4 and -6 on differentiation of rat osteoblast cells in vitro. Endocrinology 1995; 136: 2671–2677, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Warren S. M., Brunet L. J., Harland R. M., Economides A. N., Longaker M. T. The BMP antagonist noggin regulates cranial suture fusion. Nature 2003; 422: 625–629, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Xiao G., Gopalakrishman R., Jiang D., Reith E., Benson M. D., Franceschi R. T. Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J. Bone Min. Res. 2002; 17: 101–110, [CSA]
  • Kalajzic I., Kalajzic Z., Hurley M. M., Lichtler A. C., Rowe D. W. Stage specific inhibition of osteoblast lineage differentiation by FGF2 and noggin. J. Cell. Biochem. 2003; 88: 1168–1176, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Burgar H. R., Burns H. D., Elsden J. L., Lalioti M. D., Heath J. K. Association of the signaling adaptor FRS2 with fibroblast growth factor receptor 1 (Fgfr1) is mediated by alternative splicing of the juxtamembrane domain. J. Bio. Chem. 2002; 277: 4018–4123, [CSA], [CROSSREF]
  • Debiais F., Lemonnier J., Hay E., Delannoy P., Caverzasio J., Marie P. J. Fibroblast growth factor-2 (FGF) increases N-cadherin expression through protein kinase C and src-kinase pathways in human calvarial osteoblasts. J. Cell. Biochem. 2001; 81: 68–81, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Newberry E. P., Willis D., Latifi T., Boudreasux J. M., Towler D. A. Fibroblast growth factor receptor signaling activates the human interstitial collagenase promoter via the bipartite Ets-AP1 element. Mol. End. 1997; 11: 1129–1144, [CSA], [CROSSREF]
  • Kim H., Kin J., Bae S., Choi J., Kim H., Ryoo H. The protein kinase C pathway plays a central role in the FGF-stimulated expression and transactivation activity of run× 2. J. Biol. Chem. 2003; 278: 319–326, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Leclerc C., Duprat A., Moreau M. Noggin upregulates fos expression by a calcium-mediated pathway in amphibian embryos. Dev. Growth. Diff. 1999; 41: 227–238, [CSA], [CROSSREF]
  • Rawadi G., Vayssiere B., Dunn F., Baron R., Roman-Roman S. BMP-2 controls alkaline phosphates expression and osteoblast mineralization by a Wnt autocrine loop. J. Bone Min. Res. 2003; 18: 1842–1853, [CSA]
  • Whyte M. P., Landt M., Ryan L. M., Mulivor R. A., Henthorn P. S., Fedde K. N., Mahuren J. D., Coburn S. P. Alkaline phosphatase: placental and tissue-non-specific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5′-phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy. J Clin Inv. 1999; 95: 1440–1445, [CSA]
  • Kreiborg S. Crouzon syndrome: a clinical and roentgencephalometric study. Scan. J. Plast. Reconstr. Surg. 1981; 18, suppl[CSA]
  • Chen L. Li., Cuiling L., Engel A., Deng C. A Ser250Trp substitution in mouse fibroblast growth factor receptor (Fgfr2) results in craniosynostosis. Bone 2003; 33: 169–178, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Johnson K., Terkeltaub R. Upregulated ank expression in osteoarthritis can promote both chondrocyte MMP-13 expression and calcification via chondrocyte extracellular PPi excess. Osteoarthr. Cart. 2004; 12: 321–335, [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.