147
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

piR-368 promotes odontoblastic differentiation of dental papilla cells via the Smad1/5 signaling pathway by targeting Smurf1

, , &
Pages 53-62 | Received 08 Mar 2023, Accepted 24 Oct 2023, Published online: 17 Nov 2023

References

  • Ruch J, Lesot H, Bègue-Kirn C. Odontoblast differentiation. Int J Dev Biol. 1995;39(1):51–68.
  • Matalová E, Lungová V, Sharpe P. Development of tooth and associated structures. Stem cell biology and tissue engineering in dental sciences. The Netherlands: Academic Press, Amsterdam; 2015. pp. 335–346. doi:10.1016/C2011-0-07350-7.
  • Butler W. Dentin matrix proteins and dentinogenesis. Connect Tissue Res. 1995;33(1–3):59–65. doi:10.3109/03008209509016983.
  • Kawashima N, Okiji T. Odontoblasts: specialized hard-tissue-forming cells in the dentin-pulp complex. Congenit Anom (Kyoto). 2016;56(4):144–153. doi:10.1111/cga.12169.
  • Tziafas D, Kodonas K. Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod. 2010;36(5):781–789. doi:10.1016/j.joen.2010.02.006.
  • Wang J, Ran S, Liu B, Gu S. Monitoring of canonical BMP and Wnt activities during postnatal stages of mouse first molar root formation. J Appl Oral Sci. 2021;29. doi:10.1590/1678-7757-2021-0281.
  • Liu M, Goldman G, MacDougall M, Chen S. BMP signaling pathway in dentin development and diseases. Cells. 2022;11(14):11. doi:10.3390/cells11142216.
  • Ye Y, Jiang Z, Pan Y, Yang G, Wang Y. Role and mechanism of BMP4 in bone, craniofacial, and tooth development. Arch Oral Biol. 2022;140:105465. doi:10.1016/j.archoralbio.2022.105465.
  • Jia S, Zhou J, Gao Y, Baek J, Martin J, Lan Y, Jiang R. Roles of Bmp4 during tooth morphogenesis and sequential tooth formation. Development (Cambridge: England. 2013;Vol. 140pp. 423–432.
  • Macias M, Martin-Malpartida P, Massagué J. Structural determinants of Smad function in TGF-β signaling. Trends Biochem Sci. 2015;40(6):296–308. doi:10.1016/j.tibs.2015.03.012.
  • Zou M, Chen Z, Teng Y, Liu S, Jia Y, Zhang K, Sun Z-L, Wu J-J, Yuan Z-D, Feng Y, Li X, Xu R-S, Yuan F-L. The smad dependent TGF-β and BMP signaling pathway in bone remodeling and therapies. Front Mol Biosci. 2021;8:593310.
  • Nakashima M, Reddi A. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol. 2003;21(9):1025–1032. doi:10.1038/nbt864.
  • Xing L, Zhang M, Chen D. Smurf control in bone cells. J Cell Biochem. 2010;110(3):554–563. doi:10.1002/jcb.22586.
  • Cao Y, Wang C, Zhang X, Xing G, Lu K, Gu Y, He F, Zhang L. Selective small molecule compounds increase BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation. Science Reports. 2014;4(1):4965. doi:10.1038/srep04965.
  • Zhu H, Kavsak P, Abdollah S, Wrana J, Thomsen G. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature. 1999;400(6745):687–693. doi:10.1038/23293.
  • Yang F, Xu N, Li D, Guan L, He Y, Zhang Y, Lu Q, Zhang X. A feedback loop between RUNX2 and the E3 ligase SMURF1 in regulation of differentiation of human dental pulp stem cells. J Endod. 2014;40(10):1579–1586. doi:10.1016/j.joen.2014.04.010.
  • Liu F, Y CE, Watt B, Zhang Y, Gallant N M, Andl T, Yang S H, Lu M-M, Piccolo S, Schmidt-Ullrich R, Taketo M M, Morrisey E E, Atit R, Dlugosz A A, Millar S E. Wnt/β-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol. 2008;313(1):210–224. doi:10.1016/j.ydbio.2007.10.016.
  • Tamura M, Nemoto E. Role of the Wnt signaling molecules in the tooth. Jpn Dent Sci Rev. 2016;52(4):75–83. doi:10.1016/j.jdsr.2016.04.001.
  • Kim TH, Bae CH, Lee JC, Ko S O, Yang X, Jiang R, Cho E S. β-catenin is required in odontoblasts for tooth root formation. J Dent Res. 2013;92(3):215–221. doi:10.1177/0022034512470137.
  • Girard A, Sachidanandam R, Hannon G, Carmell M. A germline-specific class of small RNAs binds mammalian piwi proteins. Nature. 2006;442(7099):199–202. doi:10.1038/nature04917.
  • Kim V. Small RNAs just got bigger: piwi-interacting RNAs (piRnas) in mammalian testes. Genes Dev. 2006;20(15):1993–1997. doi:10.1101/gad.1456106.
  • Ramat A, Simonelig M. Functions of PIWI proteins in gene regulation: new arrows added to the piRNA quiver. Trends Genet. 2021;37(2):188–200. doi:10.1016/j.tig.2020.08.011.
  • Thomson T, Lin H. The biogenesis and function of PIWI proteins and piRnas: progress and prospect. Annu Rev Cell Dev Biol. 2009;25(1):355–376. doi:10.1146/annurev.cellbio.24.110707.175327.
  • Han Y, Li Y, Xia S, Zhang Y, Zheng J, Li W. PIWI proteins and PIWI-Interacting RNA: emerging roles in cancer. Cell Physiol Biochem. 2017;44(1):1–20. doi:10.1159/000484541.
  • Esposito T, Magliocca S, Formicola D, Gianfrancesco F. piR_015520 belongs to Piwi-associated RNAs regulates expression of the human melatonin receptor 1A gene. PloS One. 2011;6(7):e22727. doi:10.1371/journal.pone.0022727.
  • Senti K, Jurczak D, Sachidanandam R, Brennecke J. piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire. Genes Dev. 2015;29(16):1747–1762. doi:10.1101/gad.267252.115.
  • Zhou Y, Fang Y, Dai C, Wang Y. PiRNA pathway in the cardiovascular system: a novel regulator of cardiac differentiation, repair and regeneration. J Mol Med (Berl). 2021;99(12):1681–1690. doi:10.1007/s00109-021-02132-9.
  • Della Bella E, Menzel U, Basoli V, Tourbier C, Alini M, Stoddart M. Differential regulation of circRNA, miRNA, and piRNA during early osteogenic and chondrogenic differentiation of human mesenchymal stromal cells. Cells. 2020;9(2):398. doi:10.3390/cells9020398.
  • Lin H, Liu H, Sun Q, Yuan G, Zhang L, Chen Z. Establishment and characterization of a tamoxifen-mediated reversible immortalized mouse dental papilla cell line. In vitro Cell Dev Biol -Animal. 2013;49(2):114–121. doi:10.1007/s11626-012-9576-y.
  • Kim D, Jue S, Lee S, Kim Y, Shin S, Kim E. Effects of glutamine on proliferation, migration, and differentiation of human dental pulp cells. J Endod. 2014;40(8):1087–1094. doi:10.1016/j.joen.2013.11.023.
  • Iyengar P, Marvin D, Lama D, Tan T, Suriyamurthy S, Xie F, van Dinther M, Mei H, Verma C S, Zhang L, Ritsma L, Dijke P T. TRAF4 inhibits bladder cancer progression by promoting BMP/SMAD signaling. Mol Cancer Res. 2022;20(10):1516–1531. doi:10.1158/1541-7786.MCR-20-1029.
  • Xie Q, Li Z, Luo X, Wang D, Zhou Y, Zhao J, Gao S, Yang Y, Fu W, Kong L, Sun T. piRNA-14633 promotes cervical cancer cell malignancy in a METTL14-dependent m6A RNA methylation manner. J Transl Med. 2022;20(1):51. doi:10.1186/s12967-022-03257-2.
  • Kawata K, Narita K, Washio A, Kitamura C, Nishihara T, Kubota S, Takeda S. Odontoblast differentiation is regulated by an interplay between primary cilia and the canonical Wnt pathway. Bone. 2021;150:116001.
  • Chen G, Wang S, Long C, Wang Z, Chen X, Tang W, He X, Bao Z, Tan B, Lu W W, Li Z, Yang D, Xiao G, Peng S. PiRNA-63049 inhibits bone formation through Wnt/β-catenin signaling pathway. Int J Biol Sci. 2021;17(15):4409–4425. doi:10.7150/ijbs.64533.
  • Malik Z, Alexiou M, Hallgrimsson B, Economides A, Luder H, Graf D. Bone morphogenetic protein 2 coordinates early tooth mineralization. J Dent Res. 2018;97(7):835–843. doi:10.1177/0022034518758044.
  • Qin W, Yang F, Deng R, Li D, Song Z, Tian Y, Wang R, Ling J, Lin Z. Smad 1/5 is involved in bone morphogenetic protein-2–induced odontoblastic differentiation in human dental pulp cells. J Endod. 2012;38(1):66–71. doi:10.1016/j.joen.2011.09.025.
  • Liu J, Chen M, Ma L, Dang X, Du G. piRNA-36741 regulates BMP2-mediated osteoblast differentiation via METTL3 controlled m6A modification. Aging. 2021;13(19):23361–23375. doi:10.18632/aging.203630.
  • Yang Y, Fang S. Small non-coding RNAs-based bone regulation and targeting therapeutic strategies. Mol Cell Endocrinol. 2017;456:16–35. doi:10.1016/j.mce.2016.11.018.
  • Wu W, Lu B, Jiang R, Chen S. The function and regulation mechanism of piRnas in human cancers. Histol Histopathol. 2021;36(8):807–816. doi:10.14670/HH-18-323.
  • Cao Y, Zhang L. A Smurf1 tale: function and regulation of an ubiquitin ligase in multiple cellular networks. Cell Mol Life Sci. 2013;70(13):2305–2317. doi:10.1007/s00018-012-1170-7.
  • Koganti P, Levy-Cohen G, Blank M. Smurfs in Protein Homeostasis, Signaling, and Cancer. Front Oncol. 2018;8:295. doi:10.3389/fonc.2018.00295.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.