99
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Independent and combined effects of obesity and traumatic joint injury to the structure and composition of rat knee cartilage

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 117-132 | Received 09 Feb 2023, Accepted 22 Jan 2024, Published online: 26 Mar 2024

References

  • Bijlsma JWJ, Berenbaum F, Lafeber FPJG. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377(9783):2115–2126. doi:10.1016/S0140-6736(11)60243-2.
  • Zhuo Q, Yang W, Chen J, Wang Y. Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol. 2012;8(12):729–737. doi:10.1038/nrrheum.2012.135.
  • Glyn-Jones S, Palmer AJR, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ, et al. Osteoarthritis. Lancet. 2015;386(9991):376–387. doi:10.1016/S0140-6736(14)60802-3.
  • Guilak F. Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol. 2011;25(6):815–823. doi:10.1016/j.berh.2011.11.013.
  • Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull. 2008;87(1):77–95. doi:10.1093/bmb/ldn025.
  • Buckwalter JA. Mechanical injuries of articular cartilage. Iowa Orthop J. 1992;12:50.
  • Borrelli J, Ricci WM. Acute effects of cartilage impact. Clin Orthop Relat Res. 2004;423(423):33–39. doi:10.1097/01.blo.0000132627.13539.02.
  • Teeple E, Elsaid KA, Fleming BC. Coefficients of friction, lubricin, and cartilage damage in the anterior cruciate ligament-deficient guinea pig knee. J Orthop Res. 2008;26(2):231–237. doi:10.1002/jor.20492.
  • Roemhildt ML, Beynnon BD, Gauthier AE, Gardner-Morse M, Ertem F, Badger GJ, et al. Chronic in vivo load alteration induces degenerative changes in the rat tibiofemoral joint. Osteoarthr Cartil. 2013;21(2):346–357. doi:10.1016/j.joca.2012.10.014.
  • Mäkelä JTA, Rezaeian ZS, Mikkonen S, Madden R, Han S-K, Jurvelin JS, Herzog W, Korhonen RK, et al. Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection. Osteoarthr Cartil. 2014;22(6):869–878. doi:10.1016/j.joca.2014.04.010.
  • Ojanen SP, Finnilä MAJ, Mäkelä JTA, Saarela K, Happonen E, Herzog W, Saarakkala S, Korhonen RK, et al. Anterior cruciate ligament transection of rabbits alters composition, structure and biomechanics of articular cartilage and chondrocyte deformation 2 weeks post-surgery in a site-specific manner. J Biomech. 2020;98:0–11.
  • Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier J-P, Fahmi H, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33–42. doi:10.1038/nrrheum.2010.196.
  • Collins AT, Hu G, Newman H, Reinsvold MH, Goldsmith MR, Twomey-Kozak JN, Leddy HA, Sharma D, Shen L, DeFrate LE, Karner CM, et al. Obesity alters the collagen organization and mechanical properties of murine cartilage. Sci Rep. 2021;11(1):1–10. doi:10.1038/s41598-020-80599-1.
  • Collins KH, Lenz KL, Pollitt EN. Adipose tissue is a critical regulator of osteoarthritis. Proc Natl Acad Sci U S A. 2020;118(1):1–12. doi:10.1073/pnas.2021096118.
  • Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol. 2011;23(5):471–478. doi:10.1097/BOR.0b013e328349c2b1.
  • Wang X, Hunter D, Xu J, Ding C. Metabolic triggered inflammation in osteoarthritis. Osteoarthr Cartil. 2015;23(1):22–30. doi:10.1016/j.joca.2014.10.002.
  • Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil. 2013;21(1):16–21. doi:10.1016/j.joca.2012.11.012.
  • Daghestani HN, Kraus VB. Inflammatory biomarkers in osteoarthritis. Osteoarthr Cartil. 2015;23(11):1890–1896. doi:10.1016/j.joca.2015.02.009.
  • Mitchell NS, Catenacci VA, Wyatt HR, Hill JO. Obesity: overview of an epidemic. Psychiatr Clin North Am. 2011;34(4):717–732. doi:10.1016/j.psc.2011.08.005.
  • Messier SP, Pater M, Beavers DP, Legault C, Loeser RF, Hunter DJ, DeVita P, et al. Influences of alignment and obesity on knee joint loading in osteoarthritic gait. Osteoarthr Cartil. 2014;22(7):912–917. doi:10.1016/j.joca.2014.05.013.
  • Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis. 2013;5(2):77–94. doi:10.1177/1759720X12467868.
  • Janney CA, Jakicic JM. The influence of exercise and BMI on injuries and illnesses in overweight and obese individuals: a randomized control trial. Int J Behav Nutr Phys Act. 2010;7(1):1–11. doi:10.1186/1479-5868-7-1.
  • Richmond SA, Nettel-Aguirre A, Doyle-Baker PK, Macpherson A, Emery CA, et al. Examining measures of weight as risk factors for sport-related injury in adolescents. J Sports Med. 2016;2016:1–5.
  • Pfeifer CE, Beattie PF, Sacko RS, Hand A. Risk factors associated with non-contact anterior cruciate ligament injury: a systematic review. Int J Sports Phys Ther. 2018;13(4):575–587. doi:10.26603/ijspt20180575.
  • Moo EK, Ebrahimi M, Sibole SC. The intrinsic quality of proteoglycans, but not collagen fibres, degrades in osteoarthritic cartilage. Acta Biomater. 2022;153:178–189.
  • Thijssen E, Van Caam A, Van Der Kraan PM. Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology. 2014;54(4):588–600. doi:10.1093/rheumatology/keu464.
  • Blaker CL, Clarke EC, Little CB. Adding insult to injury: synergistic effect of combining risk-factors in models of post-traumatic osteoarthritis. Osteoarthr Cartil. 2019;27(12):1731–1734. doi:10.1016/j.joca.2019.06.010.
  • Collins KH, Reimer RA, Seerattan RA, Leonard TR, Herzog W, et al. Using diet-induced obesity to understand a metabolic subtype of osteoarthritis in rats. Osteoarthr Cartil. 2015;23(6):957–965. doi:10.1016/j.joca.2015.01.015.
  • Kiraly K, Lapveteläinen T, Arokoski J, Törrönen K, Modis L, Kiviranta HJHI, Helminen HJ. Application of selected cationic dyes for the semiquantitative estimation of glycosaminoglycans in histological sections of articular cartilage by microspectrophotometry. Histochem J. 1996;28(8):577–590. doi:10.1007/BF02331378.
  • Kiviranta I, Jurvelin J, Säämänen AM, Helminen HJ. Microspectrophotometric quantitation of glycosaminoglycans in articular cartilage sections stained with Safranin O. Histochemistry. 1985;82(3):249–255. doi:10.1007/BF00501401.
  • Rieppo J, Hallikainen J, Jurvelin JS, Kiviranta I, Helminen HJ, Hyttinen MM, et al. Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage. Microsc Res Tech. 2008;71(4):279–287. doi:10.1002/jemt.20551.
  • Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with imageJ. Biophotonics Int. 2004;11(7):36–41.
  • Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi:10.1038/nmeth.2089.
  • Karjalainen K, Tanska P, Sibole SC. Effect of cells on spatial quantification of proteoglycans in articular cartilage of small animals. Connect Tissue Res. 2022;63(6):603–614. doi:10.1080/03008207.2022.2048827.
  • Rieppo J, Hyttinen MM, Halmesmaki E, Ruotsalainen H, Vasara A, Kiviranta I, Jurvelin JS, Helminen HJ, et al. Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation. Osteoarthr Cartil. 2009;17(4):448–455. doi:10.1016/j.joca.2008.09.004.
  • Panula HE, Hyttinen MM, Arokoski JPA, Langsjo TK, Pelttari A, Kiviranta I, Helminen HJ, et al. Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis. Ann Rheum Dis. 1998;57(4):237–245. doi:10.1136/ard.57.4.237.
  • Guilak F, Ratcliffe A, Lane N. Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J Orthop Res. 1994;12(4):474–484. doi:10.1002/jor.1100120404.
  • Rios JL, Bomhof MR, Reimer RA, Hart DA, Collins KH, Herzog W, et al. Protective effect of prebiotic and exercise intervention on knee health in a rat model of diet-induced obesity. Sci Rep. 2019;9(1):1–10. doi:10.1038/s41598-019-40601-x.
  • Collins KH, Paul HA, Hart DA. A high-fat high-sucrose diet rapidly alters muscle integrity, inflammation and gut microbiota in male rats. Sci Rep. 2016;6(1):1–10. doi:10.1038/srep37278.
  • Griffin TM, Fermor B, Huebner JL, Kraus VB, Rodriguiz RM, Wetsel WC, Cao L, Setton LA, Guilak F, et al. Diet-induced obesity differentially regulates behavioral, biomechanical, and molecular risk factors for osteoarthritis in mice. Arthritis Res Ther. 2010;12(4):R130. doi:10.1186/ar3068.
  • Collins KH, Paul HA, Reimer RA, Seerattan RA, Hart DA, Herzog W, et al. Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: studies in a rat model. Osteoarthr Cartil. 2015;23(11):1989–1998. doi:10.1016/j.joca.2015.03.014.
  • Mooney RA, Sampson ER, Lerea J, Rosier RN, Zuscik MJ, et al. High-fat diet accelerates progression of osteoarthritis after meniscal/ligamentous injury. Arthritis Res Ther. 2011;13(6):R198. doi:10.1186/ar3529.
  • Louer CR, Furman BD, Huebner JL, Kraus VB, Olson SA, Guilak F, et al. Diet-induced obesity significantly increases the severity of posttraumatic arthritis in mice. Arthritis Rheumatism. 2012;64(10):3220–3230. doi:10.1002/art.34533.
  • Vincent TL. Il-1 in osteoarthritis: time for a critical review of the literature. F1000Res. 2019;8:934–939. doi:10.12688/f1000research.18831.1.
  • McNulty AL, Rothfusz NE, Leddy HA, Guilak F. Synovial fluid concentrations and relative potency of interleukin-1 alpha and beta in cartilage and meniscus degradation. J Orthop Res. 2013;31(7):1039–1045. doi:10.1002/jor.22334.
  • Roughley PJ. The structure and function of cartilage proteoglycans. Eur Cell Mater. 2006;12:92–101. doi:10.22203/eCM.v012a11.
  • Furman BD, Kent CL, Huebner JL, Kraus VB, McNulty AL, Guilak F, Olson SA. CXCL10 is upregulated in synovium and cartilage following articular fracture. J Orthop Res. 2018;36(4):1220–1227. doi:10.1002/jor.23735.
  • Dumond H, Presle N, Terlain B, Mainard D, Loeuille D, Netter P, Pottie P, et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheumatism. 2003;48(11):3118–3129. doi:10.1002/art.11303.
  • Donnenfield JI, Karamchedu NP, Fleming BC. Articular cartilage and synovium may be important sources of post-surgical synovial fluid inflammatory mediators. Am J Transl Res. 2022;14(3):1640–1651.
  • Catterall JB, Stabler TV, Flannery CR, Kraus VB. Changes in serum and synovial fluid biomarkers after acute injury (NCT00332254). Arthritis Res Ther. 2010;12(6):R229. doi:10.1186/ar3216.
  • Kloefkorn HE, Jacobs BY, Loye AM, Allen KD. Spatiotemporal gait compensations following medial collateral ligament and medial meniscus injury in the rat: correlating gait patterns to joint damage. Arthritis Res Ther. 2015;17(1):1–15. doi:10.1186/s13075-015-0791-2.
  • Christiansen BA, Guilak F, Lockwood KA, Olson SA, Pitsillides AA, Sandell LJ, Silva MJ, van der Meulen MCH, Haudenschild DR, et al. Non-invasive mouse models of post-traumatic osteoarthritis. Osteoarthr Cartil. 2015;23(10):1627–1638. doi:10.1016/j.joca.2015.05.009.
  • Maerz T, Kurdziel MD, Davidson AA, Baker KC, Anderson K, Matthew HWT, et al. Biomechanical characterization of a model of noninvasive, traumatic anterior cruciate ligament injury in the rat. Ann Biomed Eng. 2015;43(10):2467–2476. doi:10.1007/s10439-015-1292-9.
  • Christiansen BA, Anderson MJ, Lee CA, Williams JC, Yik JHN, Haudenschild DR, et al. Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis. Osteoarthr Cartil. 2012;20(7):773–782. doi:10.1016/j.joca.2012.04.014.
  • Brown SB, Hornyak JA, Jungels RR. Characterization of post-traumatic osteoarthritis in rats following anterior cruciate ligament rupture by non-invasive knee injury (NIKI). J Orthop Res. 2020;38(2):356–367. doi:10.1002/jor.24470.
  • Furman BD, Strand J, Hembree WC. Joint degeneration following closed intraarticular fracture in the mouse knee: a Model of posttraumatic arthritis. J Orthop Res. 2007;25(5):578–592. doi:10.1002/jor.20331.
  • Poulet B, Hamilton RW, Shefelbine S, Pitsillides AA. Characterizing a novel and adjustable noninvasive murine joint loading model. Arthritis Rheumatism. 2011;63(1):137–147. doi:10.1002/art.27765.
  • Froimson MI, Ratcliffe A, Gardner TR, Mow VC. Differences in patellofemoral joint cartilage material properties and their significance to the etiology of cartilage surface fibrillation. Osteoarthr Cartil. 1997;5(6):377–386. doi:10.1016/S1063-4584(97)80042-8.
  • Arokoski MEA, Tiitu V, Jurvelin JS. Topographical investigation of changes in depth-wise proteoglycan distribution in rabbit femoral articular cartilage at 4 weeks after transection of the anterior cruciate ligament. J Orthop Res. 2015;33(9):1278–1286. doi:10.1002/jor.22906.
  • Li G, Sang EP, DeFrate LE. The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact. Clin Biomech. 2005;20(7):736–744. doi:10.1016/j.clinbiomech.2005.04.001.
  • Glasson SS, Blanchet TJ, Morris EA. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr Cartil. 2007;15(9):1061–1069. doi:10.1016/j.joca.2007.03.006.
  • Warmink K, Kozijn AE, Bobeldijk I, Stoop R, Weinans H, Korthagen NM, et al. High-fat feeding primes the mouse knee joint to develop osteoarthritis and pathologic infrapatellar fat pad changes after surgically induced injury. Osteoarthr Cartil. 2020;28(5):593–602. doi:10.1016/j.joca.2020.03.008.
  • Afzali MF, Radakovich LB, Sykes MM, Campbell MA, Patton KM, Sanford JL, Vigon N, Ek R, Narez GE, Marolf AJ, Sikes KJ, Haut Donahue TL, Santangelo KS, et al. Early removal of the infrapatellar fat pad/synovium complex beneficially alters the pathogenesis of moderate stage idiopathic knee osteoarthritis in male Dunkin Hartley guinea pigs. Arthritis Res Ther. 2022;24(1):1–19. doi:10.1186/s13075-022-02971-y.
  • Clockaerts S, Bastiaansen-Jenniskens YM, Runhaar J, Van Osch GJVM, Van Offel JF, Verhaar JAN, De Clerck LS, Somville J, et al. The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review. Osteoarthr Cartil. 2010;18(7):876–882. doi:10.1016/j.joca.2010.03.014.
  • Zhou S, Maleitzke T, Geissler S. Source and hub of inflammation: the infrapatellar fat pad and its interactions with articular tissues during knee osteoarthritis. J Orthop Res. 2022;40(7):1492–1504. doi:10.1002/jor.25347.
  • Turunen SM, Han SK, Herzog W, Korhonen RK. Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection. Osteoarthr Cartil. 2013;21(3):505–513. doi:10.1016/j.joca.2012.12.001.
  • Huebner JL, Williams JM, Deberg M, Henrotin Y, Kraus VB, et al. Collagen fibril disruption occurs early in primary guinea pig knee osteoarthritis. Osteoarthr Cartil. 2010;18(3):397–405. doi:10.1016/j.joca.2009.09.011.
  • Saarakkala S, Julkunen P, Kiviranta P, Mäkitalo J, Jurvelin JS, Korhonen RK, et al. Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. Osteoarthr Cartil. 2010;18(1):73–81. doi:10.1016/j.joca.2009.08.003.
  • Sibole SC, Moo EK, Federico S, Herzog W. The protective function of directed asymmetry in the pericellular matrix enveloping chondrocytes. Ann Biomed Eng. 2022;50(1):39–55. doi:10.1007/s10439-021-02900-1.
  • Ojanen SP, Finnilä MAJ, Reunamo AE, Ronkainen AP, Mikkonen S, Herzog W, Saarakkala S, Korhonen RK, et al. Site-specific glycosaminoglycan content is better maintained in the pericellular matrix than the extracellular matrix in early post-traumatic osteoarthritis. PloS ONE. 2018;13(4):1–19. doi:10.1371/journal.pone.0196203.
  • Moo EK, Sibole SC, Han SK, Herzog W. Three-dimensional micro-scale strain mapping in living biological soft tissues. Acta Biomater. 2018;70:260–269. doi:10.1016/j.actbio.2018.01.048.
  • Guilak F, Nims RJ, Dicks A. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol. 2018;71–72:40–50.
  • Leipzig ND, Athanasiou KA. Static compression of single chondrocytes catabolically modifies single-cell gene Expression. Biophys J. 2008;94(6):2412–2422. doi:10.1529/biophysj.107.114207.
  • Jones WR, Ping Ting-Beall H, Lee GM, Kelley SS, Hochmuth RM, Guilak F, et al. Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J Biomech. 1999;32(2):119–127. doi:10.1016/S0021-9290(98)00166-3.
  • Fan M, Wang C, Kwok B, Kahle ER, He L, Lucas Lu X, Mauck RL, Han L, et al. Impacts of aging on murine cartilage biomechanics and chondrocyte in situ calcium signaling. J Biomech. 2022;144:111336.
  • Moo EK, Han SK, Federico S, Sibole SC, Jinha A, Abu Osman NA, Pingguan-Murphy B, Herzog W, et al. Extracellular matrix integrity affects the mechanical behaviour of in-situ chondrocytes under compression. J Biomech. 2014;47(5):1004–1013. doi:10.1016/j.jbiomech.2014.01.003.
  • Moo EK, Amrein M, Epstein M, Duvall M, Abu Osman N, Pingguan-Murphy B, Herzog W, et al. The properties of chondrocyte membrane reservoirs and their role in impact-induced cell death. Biophys J. 2013;105(7):1590–1600. doi:10.1016/j.bpj.2013.08.035.
  • Moo EK, Herzog W. Unfolding of membrane ruffles of in situ chondrocytes under compressive loads. J Orthop Res. 2017;35(2):304–310. doi:10.1002/jor.23260.
  • Moo EK, Sibole SC, Federico S. Microscale investigation of the anisotropic swelling of cartilage tissue and cells in response to hypo-osmotic challenges. J Orthop Res. 2023;42(1):54–65. doi:10.1002/jor.25657.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.