86
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

COL1A1 proximal promoter topology regulates its transcriptional response to transforming growth factor β

, , &
Pages 161-169 | Received 14 Apr 2023, Accepted 09 Feb 2024, Published online: 04 Mar 2024

References

  • Schilling JA. Wound healing. Physiol Rev. 1968;48(2):374–423. doi:10.1152/physrev.1968.48.2.374.
  • Sonnemann KJ, Bement WM. Wound repair: toward understanding and integration of single- cell and multicellular wound responses. Annu Rev Cell Dev Biol. 2011;27(1):237–263. doi:10.1146/annurev-cellbio-092910-154251.
  • Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665–706. doi:10.1152/physrev.00067.2017.
  • Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210. doi:10.1002/path.2277.
  • Rockey DC, Bell PD, Hill JA. Fibrosis — a common pathway to organ injury and failure. N Engl J Med. 2015;372(12):1138–1149. doi:10.1056/NEJMra1300575.
  • Rosenbloom J, Macarak E, Piera-Velazquez S, Jimenez SA. Human fibrotic diseases: current challenges in fibrosis research. Methods Mol Biol. 2017;1627:1–23.
  • Majo J, Klinkhammer BM, Boor P, Tiniakos D. Pathology and natural history of organ fibrosis. Curr Opin Pharmacol. 2019;49:82–89. doi:10.1016/j.coph.2019.09.009.
  • Weiskirchen R, Weiskirchen S, Tacke F. Organ and tissue fibrosis: molecular signals, cellular mechanisms and translational implications. Mol Aspects Med. 2019;65:2–15. doi:10.1016/j.mam.2018.06.003.
  • Zhao M, Wang L, Wang M, Zhou S, Lu Y, Cui H, Racanelli AC, Zhang L, Ye T, Ding B, Zhang B, Yang J, Yao Y. Targeting fibrosis: mechanisms and clinical trials. Signal Transduct Target Ther. 2022;7(1):206. doi:10.1038/s41392-022-01070-3.
  • Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest. 2007;117(3):557–567. doi:10.1172/JCI31139.
  • Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med. 2009;360(19):1989–2003. doi:10.1056/NEJMra0806188.
  • Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol. 2012;8(1):42–54. doi:10.1038/nrrheum.2011.149.
  • Denton CP, Khanna D. Systemic sclerosis. Lancet. 2017;390(10103):1685–1699. doi:10.1016/S0140-6736(17)30933-9.
  • Zhao X, Kwan JYY, Yip K, Liu PP, Liu FF. Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov. 2020;19(1):57–75. doi:10.1038/s41573-019-0040-5.
  • Ghosh AK. Factors involved in the regulation of type I collagen gene expression: implication in fibrosis. Exp Biol Med (Maywood). 2002;227(5):301–314. doi:10.1177/153537020222700502.
  • Schulz JN, Plomann M, Sengle G, Gullberg D, Krieg T, Eckes B. New developments on skin fibrosis - essential signals emanating from the extracellular matrix for the control of myofibroblasts. Matrix Biol. 2018;68-69:522–532. doi:10.1016/j.matbio.2018.01.025.
  • Lurje I, Gaisa NT, Weiskirchen R, Tacke F. Mechanisms of organ fibrosis: emerging concepts and implications for novel treatment strategies. Mol Aspects Med. 2023;92:101191. doi:10.1016/j.mam.2023.101191.
  • Cutroneo KR. How is type I procollagen synthesis regulated at the gene level during tissue fibrosis. J Cell Biochem. 2003;90(1):1–5. doi:10.1002/jcb.10599.
  • Devos H, Zoidakis J, Roubelakis MG, Latosinska A, Vlahou A. Reviewing the regulators of COL1A1. Int J Mol Sci. 2023;24(12):10004. doi:10.3390/ijms241210004.
  • Lawrence DA. Transforming growth factor-beta: a general review. Eur Cytokine Netw. 1996;7(3):363–374.
  • Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8(5):a021873. doi:10.1101/cshperspect.a021873.
  • Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325–338. doi:10.1038/nrneph.2016.48.
  • Györfi AH, Matei AE, Distler JHW. Targeting TGF-β signaling for the treatment of fibrosis. Matrix Biol. 2018;68-69:8–27. doi:10.1016/j.matbio.2017.12.016.
  • Frangogiannis N. Transforming growth factor-β in tissue fibrosis. J Exp Med. 2020;217(3):e20190103. doi:10.1084/jem.20190103.
  • Budi EH, Schaub JR, Decaris M, Turner S, Derynck R. TGF-β as a driver of fibrosis: physiological roles and therapeutic opportunities. J Pathol. 2021;254(4):358–373. doi:10.1002/path.5680.
  • Ihn H. The role of TGF-beta signaling in the pathogenesis of fibrosis in scleroderma. Arch Immunol Ther Exp (Warsz). 2002;50(5):325–331.
  • Varga J, Whitfield ML. Transforming growth factor-beta in systemic sclerosis (scleroderma). Front Biosci. 2009;S1(1):226–235. doi:10.2741/s22.
  • Jimenez SA, Castro SV, Piera-Velazquez S. Role of growth factors in the pathogenesis of tissue fibrosis in systemic sclerosis. Curr Rheum Rev. 2010;6(4):283–294. doi:10.2174/157339710793205611.
  • Lafyatis R. Transforming growth factor β—at the centre of systemic sclerosis. Nat Rev Rheumatol. 2014;10(12):706–719. doi:10.1038/nrrheum.2014.137.
  • Slack JL, Liska DJ, Bornstein P. Regulation of expression of the type I collagen genes. Am J Med Genet. 1993;45(2):140–151. doi:10.1002/ajmg.1320450203.
  • Karsenty G, Park RW. Regulation of type I collagen genes expression. Int Rev Immunol. 1995;12(2–4):177–185. doi:10.3109/08830189509056711.
  • Ramirez F, Tanaka S, Bou-Gharios G. Transcriptional regulation of the human α2(I) collagen gene (COL1A2), an informative model system to study fibrotic diseases. Matrix Biol. 2006;25(6):365–372. doi:10.1016/j.matbio.2006.05.002.
  • Chu ML, DeWet W, Ramirez F, Ramirez F. Fine structural analysis of the human pro-alpha 1 (I) collagen gene. Promoter structure, AluI repeats, and polymorphic transcripts. J Biol Chem. 1985;260(4):2315–2320. doi:10.1016/S0021-9258(18)89556-4.
  • Rossouw CMS, Vergeer WP, Plooy SJD, Bernard MP, Ramirez F, DeWet W. DNA sequences in the first intron of the human pro-alpha 1(I) collagen gene enhance transcription. J Cell Biochem. 1987;262(31):15151–15157. doi:10.1016/S0021-9258(18)48151-3.
  • Boast S, Su MW, Ramirez F, Sanchez M, Avvedimento EV. Functional analysis of cis- acting DNA sequences controlling transcription of the human type I collagen genes. J Biol Chem. 1990;265(22):13351–13356. doi:10.1016/S0021-9258(19)38305-X.
  • Jimenez SA, Varga J, Olsen A, Li L, Diaz A, Herhal J. Functional analysis of human alpha 1(I) procollagen gene promoter. Differential activity in collagen-producing and -nonproducing cells and response to transforming growth factor beta 1. J Biol Chem. 1994;269(17):12684–12691. doi:10.1016/S0021-9258(18)99930-8.
  • Maity SN, Golumbek PT, Karsenty G, de Crombrugghe B. Selective activation of transcription by a novel CCAAT binding factor. Science. 1988;241(4865):582–585. doi:10.1126/science.3399893.
  • Nehls MC, Grapilon M, Brenner DA. NF-I/Sp1 Switch elements regulate collagen α1(I) gene expression. DNA Cell Biol. 1992;11(6):443–452. doi:10.1089/dna.1992.11.443.
  • Bi W, Wu L, Coustry F, de Crombrugghe B, Maity SN. DNA binding specificity of the CCAAT-binding factor CBF/NF-Y. J Bio Chem. 1997;272(42):26562–26572. doi:10.1074/jbc.272.42.26562.
  • Maity SN, de Crombrugghe B. Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem Sci. 1998;23(5):174–178. doi:10.1016/S0968-0004(98)01201-8.
  • Chen SJ, Artlett CM, Jimenez SA, Varga J. Modulation of human α1(I) procollagen gene activity by interaction with Sp1 and Sp3 transcription factors in vitro. Gene. 1998;215(1):101–110. doi:10.1016/S0378-1119(98)00268-6.
  • Saitta B, Gaidarova S, Cicchillitti L, Jimenez SA. CCAAT binding transcription factor binds and regulates human COL1A1 promoter activity in human dermal fibroblasts: demonstration of increased binding in systemic sclerosis fibroblasts. Arthritis Rheumatism. 2000;43(10):2219–2229. doi:10.1002/1529-0131(200010)43:10<2219:AID-ANR9>3.0.CO;2-N.
  • Artlett CM, Chen SJ, Varga J, Jimenez SA. Modulation of basal expression of the human α1(I) procollagen gene (COL1A1) by tandem NF-1/Sp1 promoter elements in normal human dermal fibroblasts. Matrix Biol. 1998;17(6):425–434. doi:10.1016/S0945-053X(98)90102-0.
  • Hitraya EG, Jimenez SA. Transcriptional activation of the α1(1) procollagen gene in systemic sclerosis dermal fibroblasts. Role of intronic sequences. Arthritis Rheumatism. 1996;39(8):1347–1354. doi:10.1002/art.1780390812.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle protein DNA binding. Anal Biochem. 1976;72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3.
  • Gorman CM, Moffet OS, Howard BH. Recombinant genomes which express chloramphenicol acetyl transferase in mammalian cells. Mol Cell Biol. 1982;2(9):1044–1051. doi:10.1128/MCB.2.9.1044.
  • Digman JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983;11(5):1475–1489. doi:10.1093/nar/11.5.1475.
  • Reményi A, Schöler HR, Wilmanns M. Combinatorial control of gene expression. Nature Struct Mol Biol. 2004;11(9):812–815. doi:10.1038/nsmb820.
  • Coustry F, Maity S, Sinha S, de Crombrugghe B. The transcriptional activity of the CCAAT-binding factor CBF is mediated by two distinct activation domains, one in the CBF- B subunit and the other in the CBF-C subunit. J Biol Chem. 1996;271(24):14485–14491. doi:10.1074/jbc.271.24.14485.
  • Coustry F, Sinha S, Maity SN, de Crombrugghe B. The two activation domains of the CCAAT-binding factor CBF interact with the dTAFII110 component of the drosophila TFIID complex. Biochem J. 1998;331(1):291–297. doi:10.1042/bj3310291.
  • van der Vliet PC, Verrijzer CP. Bending of DNA by transcription factors. BioEssays. 1993;15(1):25–32. doi:10.1002/bies.950150105.
  • Harrington RE. DNA curving and bending in protein–DNA recognition. Mol Microbiol. 1992;6(18):2549–2555. doi:10.1111/j.1365-2958.1992.tb01431.x.
  • Sjøttem E, Andersen C, Johansen T. Structural and functional analyses of DNA bending induced by Sp1 family transcription factors 1 1 edited by T. Richmond. J Mol Biol. 1997;267(3):490–504. doi:10.1006/jmbi.1997.0893.
  • Xiong S, Chirala SS, Wakil SJ. Sterol regulation of human fatty acid synthase promoter I requires nuclear factor-Y- and sp-1-binding sites. Proc Natl Acad Sci USA. 2000;97(8):3948–3953. doi:10.1073/pnas.040574197.
  • Cicchillitti L, Jimenez SA, Sala A, Saitta B. B-Myb acts as a repressor of human COL1A1 collagen gene expression by interacting with Sp1 and CBF factors in scleroderma fibroblasts. Biochem J. 2004;378(Part 2):609–616. doi:10.1042/bj20031110.
  • Kypriotou M, Beauchef G, Chadjichristos C. The transcription of human α1(I) procollagen gene (COL1A1) is suppressed by tumour necrosis factor-α through proximal short promoter elements: evidence for suppression mechanisms mediated by two nuclear-factorbinding sites. Biochem J. 1996;319(3):811–816. doi:10.1042/bj3190811.
  • Beauchef G, Bigot N, Kypriotou M, Dompmartin- Blanchere A, Oddos T, Maquart FX. The p65 subunit of NF-κB inhibits COL1A1 gene transcription in human dermal and scleroderma fibroblasts through its recruitment on promoter by protein interaction with transcriptional activators (c-krox, Sp1, and Sp3). J Biol Chem. 2012;287(5):3462–3478. doi:10.1074/jbc.M111.286443.
  • Suske G. NF-Y and SP transcription factors — new insights in a long-standing liaison. Biochim Biophys Acta Gene Regul Mech. 2017;1860(5):590–597. doi:10.1016/j.bbagrm.2016.08.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.