930
Views
7
CrossRef citations to date
0
Altmetric
Article

Studies of indirect and direct effects of hypervitaminosis A on rat bone by comparing free access to food and pair-feeding

ORCID Icon, , &
Pages 82-85 | Received 08 Jan 2018, Accepted 28 Feb 2018, Published online: 26 Apr 2018

References

  • Takahashi K, Nakamiya Z, Kawakami K, Kitasato T. On the physical and chemical properties of biosterin (a name given to fat-soluble A) and on its physiological significance. Sci Pap Inst Phys Chem Res Tokyo. 1925;3:81–145.
  • Collazo J, Rodriguez J. Hypervitaminose II, exophtalmus und spontanfrakturen. Klin Wochschr. 1933;12:1768–71.
  • Bomskov C, Seeman G. Uber eine wirkung des vitamin A auf den mineralhaushalt. Z Ges Exp Med. 1933;89:771–9.
  • Strauss KS. Beobachtungen bei Hypervitaminose A. Beitr Pathol Anat. 1934;94:345–52.
  • Moore T, Wang YL. Hypervitaminosis A. Biochem J. 1945;39:222–8.
  • Rodahl K. Hypervitaminosis A in the rat. J Nutr. 1950;41:399–421.
  • Nieman C, Obbink H. The biochemistry and pathology of hypervitaminosis A. Vitam Horm. 1954;12:69–99.
  • Binkley N, Krueger D. Hypervitaminosis A and bone. Nutr Rev. 2000;58:138–44.
  • Melhus H. Vitamin A and fracture risk. In: New SA, Bonjour JP, editors. Nutritional aspects of bone health. Cambridge: The Royal Society of Chemistry: 2003. p. 368–402.
  • Green AC, Kocovski P, Jovic T, Walia MK, Chandraratna RA, Martin TJ, et al. Retinoic acid receptor signalling directly regulates osteoblast and adipocyte differentiation from mesenchymal progenitor cells. Exp Cell Res. 2017;350:284–97.
  • Mallia AK, Smith JE, Goodman DW. Metabolism of retinol-binding protein and vitamin A during hypervitaminosis A in the rat. J Lipid Res. 1975;16:180–8.
  • Rhee Y, Namgung R, Park DH, Lee HC, Huh GB, Lim SK. The effects of recombinant human parathyroid hormone, rhPTH(1-84), on bone mass in undernourished rats. J Endocrinol. 2002;174:419–25.
  • Boyer PM, Compagnucci GE, Olivera MI, Bozzini C, Roig MC, Compagnucci CV, et al. Bone status in an animal model of chronic sub-optimal nutrition: a morphometric, densitometric and mechanical study. Br J Nutr. 2005;93:663–9.
  • Hamrick MW, Ding KH, Ponnala S, Ferrari SL, Isales CM. Caloric restriction decreases cortical bone mass but spares trabecular bone in the mouse skeleton: implications for the regulation of bone mass by body weight. J Bone Miner Res. 2008;23:870–8.
  • Behrendt AK, Kuhla A, Osterberg A, Polley C, Herlyn P, Fischer DC, et al. Dietary restriction-induced alterations in bone phenotype: effects of lifelong versus short-term caloric restriction on femoral and vertebral bone in C57BL/6 mice. J Bone Miner Res. 2016;31:852–63.
  • Lind T, Lind PM, Jacobson A, Hu L, Sundqvist A, Risteli J, et al. High dietary intake of retinol leads to bone marrow hypoxia and diaphyseal endosteal mineralization in rats. Bone. 2011;48:496–506.
  • Lind T, Sundqvist A, Hu L, Pejler G, Andersson G, Jacobson A, et al. Vitamin A is a negative regulator of osteoblast mineralization. PLoS One. 2013;8:e82388.
  • Lejonklou MH, Christiansen S, Örberg J, Shen L, Larsson S, Boberg J, et al. Low-dose developmental exposure to bisphenol A alters the femoral bone geometry in Wistar rats. Chemosphere. 2016;164:339–46.
  • Lind PM, Lind L, Larsson S, Orberg J. Torsional testing and peripheral quantitative computed tomography in rat humerus. Bone. 2001;29:265–70.
  • Smith FR, Goodman DS. Vitamin A transport in human vitamin A toxicity. N Engl J Med. 1976;294:805–8.
  • Händel MN, Moon RJ, Titcombe P, Abrahamsen B, Heitmann BL, Calder PC, et al. Maternal serum retinol and β-carotene concentrations and neonatal bone mineralization: results from the Southampton Women’s Survey cohort. Am J Clin Nutr. 2016;104:1183–8.
  • Johansson S, Lind PM, Hakansson H, Oxlund H, Orberg J, Melhus H. Subclinical hypervitaminosis A causes fragile bones in rats. Bone. 2002;31:685–9.
  • Kneissel M, Studer A, Cortesi R, Susa M. Retinoid-induced bone thinning is caused by subperiosteal osteoclast activity in adult rodents. Bone. 2005;36:202–14.