189
Views
14
CrossRef citations to date
0
Altmetric
Articles

High‐resolution melting analysis for the rapid detection of an intronic single nucleotide polymorphism in SLC22A12 in male patients with primary gout in China

, , , , &
Pages 276-281 | Accepted 22 Oct 2008, Published online: 13 Aug 2009

References

  • Nan H., Qiao Q., Dong Y., Gao W., Tang B., Qian R., et al. The prevalence of hyperuricemia in a population of the coastal city of Qingdao, China. J Rheumatol 2006; 33: 1346–50
  • Hoskison T. K., Wortmann R. L. Advances in the management of gout and hyperuricaemia. Scand J Rheumatol 2006; 35: 251–60
  • Lippi G., Montagnana M., Franchini M., Favaloro E. J., Targher G. The paradoxical relationship between serum uric acid and cardiovascular disease. Clin Chim Acta 2008; 392: 1–7
  • Strasak A. M., Kelleher C. C., Brant L. J., Rapp K., Ruttmann E., Concin H., et al. Serum uric acid is an independent predictor for all major forms of cardiovascular death in 28,613 elderly women: a prospective 21‐year follow‐up study. Int J Cardiol 2008; 125: 232–9
  • Scott J. T. Gout. Bailliere's Clin Rheumatol 1987; 1: 525–46
  • Enomoto A., Kimura H., Chairoungdua A., Shigeta Y., Jutabha P., Cha S. H., et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002; 417: 447–52
  • Hediger M. A., Johnson R. J., Miyazaki H., Endou H. Molecular physiology of urate transport. Physiology (Bethesda) 2005; 20: 125–33
  • Enomoto A., Kimura H., Chairoungdua A., Shigeta Y., Jutabha P., Cha S., et al. Molecular identification of a renal urate‐anion exchanger that regulates blood urate levels. Nature 2002; 417: 447–52
  • Iwai N., Mino Y., Hosoyamada M., Tago N., Kokubo Y., Endou H. A high prevalence of renal hypouricemia caused by inactive SLC22A12 in Japanese. Kidney Int 2004; 66: 935–44
  • Vázquez‐Mellado J., Jiménez‐Vaca A. L., Cuevas‐Covarrubias S., Alvarado‐Romano V., Pozo‐Molina G., Burgos‐Vargas R. Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout. Rheumatology 2007; 46: 215–19
  • Reed G. H., Kent J. O., Wittwer C. T. High‐resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 2007; 8: 597–608
  • Vandersteen J. G., Bayrak‐Toydemir P., Palais R. A., Wittwer C. T. Identifying common genetic variants by high‐resolution melting. Clin Chem 2007; 53: 1191–8
  • Fang J., Alderman M. H. Serum uric acid and cardiovascular mortality. The NHANES I Epidemiologic Follow‐up Study, 1971–1992. National Health and Nutrition Examination Survey. J Am Med Assoc 2000; 283: 2404–10
  • Ichida K., Hosoyamada M., Hisayome I., Enomoto A., Hikita M., Endou H., et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan: influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol 2004; 15: 164–73
  • Tanaka M., Itoh K., Matsushita K., Wakita N., Adachi M., Nonoguchi H. Two male siblings with hereditary renal hypouricemia and exercise‐induced ARF. Am J Kidney Dis 2003; 42: 1287–92
  • Shima Y., Teruya K., Ohta H. Association between intronic SNP in urate‐anion exchanger gene, SLC22A12, and serum uric acid levels in Japanese. Life Sci 2006; 79: 2234–7
  • Graessler J., Graessler A., Unger S., Kopprasch S., Tausche A. K., Kuhlisch E., et al. Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis Rheum 2006; 54: 292–300
  • Graham R., Liew M., Meadows C., Lyon E., Wittwer C. T. Distinguishing different DNA heterozygotes by high‐resolution melting. Clin Chem 2005; 51: 1295–8
  • Vandersteen J. G., Bayrak‐Toydemir P., Palais R. A., Wittwer C. T. Identifying common genetic variants by high‐resolution melting. Clin Chem 2007; 53: 1191–8
  • Montgomery J., Wittwer C. T., Palais R., Zhou L. Simultaneous mutation scanning and genotyping by high‐resolution DNA melting analysis. Nat Protoc 2007; 2: 59–66
  • Hung C. C., Lee C. N., Chang C. H., Jong Y. J., Chen C. P., Hsieh W. S., et al. Genotyping of the G1138A mutation of the FGFR3 gene in patients with achondroplasia using high‐resolution melting analysis. Clin Biochem 2008; 41: 162–6
  • Liyanage K. E., Hooper A. J., Defesche J. C., Burnett J. R., van Bockxmeer F. M. High‐resolution melting analysis for detection of familial ligand‐defective apolipoprotein B‐100 mutations. Ann Clin Biochem 2008; 45((Pt 2))170–6
  • Bastien R., Lewis T. B., Hawkes J. E., Quackenbush J. F., Robbins T. C., Palazzo J., et al. High‐throughput amplicon scanning of the TP53 gene in breast cancer using high‐resolution fluorescent melting curve analyses and automatic mutation calling. Hum Mutat 2008; 29: 757–64

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.