31
Views
0
CrossRef citations to date
0
Altmetric
Research Article

David Kupfer, Ph.D. A Mentor and a Scientist

, Ph.D.
Pages 13-22 | Published online: 09 Oct 2008

References

  • Bernstein L., Deapen D., Cerhan J. R., Schwartz S. M., Liff J., McGann-Maloney E., Perlman J. A., Ford L. Tamoxifen therapy for breast cancer and endometrial cancer risk. J. Natl. Cancer Inst 1999; 91: 1654–1662, [INFOTRIEVE], [CSA]
  • Blizard D., Sueyoshi T., Negishi M., Dehal S. S., Kupfer D. Mechanism of induction of cytochrome P450 enzymes by the proestrogenic endocrine disruptor pesticide methoxychlor: interactions of methoxychlor metabolites with the constitutive androstane receptor system. Drug Metab. Dispos 2001; 29: 781–785, [INFOTRIEVE], [CSA]
  • Borgna J.-L., Rochefort H. Hydroxylated metabolites of tamoxifen are formed in situ and bound to estrogen receptor in target tissue. J. Biol. Chem 1981; 256: 859–868, [INFOTRIEVE], [CSA]
  • Bulger W. H., Muccitelli R. M., Kupfer D. Studies on the in vivo and in vitro estrogenic activities of methoxychlor and its metabolites. Biochem. Pharmacol 1978; 27: 2417–2423, Role of hepatic mono-oxygenases in methoxychlor activation[INFOTRIEVE], [CROSSREF], [CSA]
  • Bulger W. H., Temple J. E., Kupfer D. Covalent binding of 14C-methoxychlor metabolites to rat liver components. Toxicol. Appl. Pharmacol 1983; 68: 367–374, [INFOTRIEVE], [CROSSREF], [CSA]
  • Bulger W. H., Kupfer D. Characteristics of monooxygenase-mediated covalent binding of methoxychlor in human and rat liver microsomes. Drug Metab. Dispos 1989; 17: 487–494, [INFOTRIEVE], [CSA]
  • Coezy E., Borgna J. L., Rochefort H. Tamoxifen and metabolites in MCF-7 cells: correlation between binding to estrogen receptor and inhibition of cell growth. Cancer Res 1988; 42: 317–323, [CSA]
  • Crewe H. K., Ellis S. W., Lennard M. S., Tucker G. T. Variable contribution of cytochrome P450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem. Pharmacol 1997; 53: 171–178, [INFOTRIEVE], [CROSSREF], [CSA]
  • Cummings A. M., Luskey J. Effect of methoxychlor on ovarian steroidogenesis: role in early pregnancy loss. Reprod. Toxicol 1993; 7: 17–23, [INFOTRIEVE], [CROSSREF], [CSA]
  • Dehal S. S., Kupfer D. Metabolism of the proestrogenic pesticide methoxychlor by hepatic P450 monooxygenases in rats and humans. Drug Metab. Dispos 1994; 22: 937–946, Dual pathways involving novel ortho ring-hydroxylation by CYP2B[INFOTRIEVE], [CSA]
  • Dehal S. S., Kupfer D. Evidence that the catechols 3,4-dihydroxytamoxifen is a proximate intermediate to the reactive species binding covalently to proteins. Cancer Res 1996; 56: 1283–1290, [INFOTRIEVE], [CSA]
  • Dehal S. S., Kupfer D. CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res 1997; 57: 3402–3406, [INFOTRIEVE], [CSA]
  • Dehal S. S., Kupfer D. Cytochrome P-450 3A and 2D6 catalyze ortho hydroxylation of 4-hydroxytamoxifen and 3-hydroxytamoxifen (Droloxifene) yielding tamoxifen catechol: involvement of catechols in covalent binding to hepatic proteins. Drug Metab. Dispos 1999; 27: 681–688, [INFOTRIEVE], [CSA]
  • Dehal and Kupfer (unpublished)
  • Fan P. W., Zhang F., Bolton J. L. 4-Hydroxylated metabolites of the antiestrogens tamoxifen and toremifene are metabolized to unusually stable quinone methides. Chem. Res. Toxicol 2000; 13: 45–52, [INFOTRIEVE], [CROSSREF], [CSA]
  • Foster A. B., Griggs L. J., Jarman M., vanMaanen M. S., Schulten H.-R. Metabolism of tamoxifen by rat liver microsomes: formation of the oxide, a new metabolite. Biochem. Pharmacol 1980; 29: 1977–1979, [INFOTRIEVE], [CROSSREF], [CSA]
  • Furr B. J. A., Jordan V. C. The pharmacology and clinical uses of tamoxifen. Pharmacol. &Ther 1984; 25: 127–205, [CROSSREF], [CSA]
  • Gaido K. W., Maness S. C., McDonnell D. P., Dehal S. S., Kupfer D., Safe S. Interaction of methoxychlor and related compounds with estrogen receptor alpha and beta, and androgen receptor: structure-activity studies. Mol. Pharmacol 2000; 58: 852–858, [INFOTRIEVE], [CSA]
  • Gray L. E., Jr., Ostby J. S., Farrell J. M., Sigmon E. R., Goldman J. M. Methoxychlor induces estrogen-like alterations of behavior and the reproductive tract in the female rat and hamster: effect on sex behavior, running wheel activity and uterine morphology. Toxicol. Appl. Pharmacol 1988; 96: 525–540, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hazai E., Gagne P. V., Kupfer D. Glucuronidation of the oxidative cytochrome P450-mediated phenolic metabolites of the endocrine disruptor pesticide: methoxychlor by human hepatic UDP-glucuronosyltransferases. Drug Metab. Dispos 2004; 32: 742–751, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hu Y., Kupfer D. Metabolism of the endocrine disruptor pesticide methoxychlor by human P450s: pathways involving a novel catechol metabolite. Drug Metab. Dispos 2002; 30: 1035–1042, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hu Y., Krausz K., Gelboin H. V., Kupfer D. CYP2C subfamily, primarily CYP2C9, catalyzes the enantioselective demethylation of the endocrine disruptor pesticide methoxychlor in human liver microsomes: use of inhibitory monoclonal antibodies in P450 identification. Xenobiotica 2004; 34: 117–132, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hu Y., Dehal S. S., Hynd G., Jones G. B., Kupfer D. CYP2D6-mediated catalysis of tamoxifen aromatic hydroxylation with an NIH shift: similar hydroxylation mechanism in chicken, rat and human liver microsomes. Xenobiotica 2003; 33: 141–151, [INFOTRIEVE], [CROSSREF], [CSA]
  • Jacolot F., Simon I., Dreano Y., Beaune P., Riche C., Berthou F. Identification of the cytochrome P-450 IIIA family as the enzymes involved in the N-demethylation of tamoxifen in human liver microsomes. Biochem. Pharmacol 1991; 41: 1911–1919, [INFOTRIEVE], [CROSSREF], [CSA]
  • Jordan V. C. Tamoxifen: a most unlikely pioneering medicine. Nature Rev 2003; 2: 205–213, [CSA]
  • Kapoor I. P., Metcalf R. L., Nystrom R. F., Sangha G. K. Comparative metabolism of methoxychlor, methiochlor, and DDT in mouse, insects, and in a model ecosystem. J. Agric. Food Chem 1970; 18: 1145–1152, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kupfer D. The covalent binding of tamoxifen to proteins and DNA. Tamoxifen: Beyond the Antiestrogen, J. A. Kellen. Birkhauser, Boston 1996; 201–230
  • Kupfer D., Bulger W. H., Theoharides A. D. Metabolism of methoxychlor by hepatic P-450 monooxygenases in rat and human. I. Characterization of a novel catechol metabolite. Chem. Res. Toxicol 1990; 3: 8–16, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kupfer D., Mani C., Lee C. A., Rifkind A. B. Induction of tamoxifen-4-hydroxylation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), b-naphthoflavone (bNF), and phenobarbital (PB) in avian liver: identification of P450 TCDDAA as catalyst of 4-hydroxylation induced by TCDD and bNF. Cancer Res 1994; 53: 3140–3144, [CSA]
  • Li H.-C., Dehal S. S., Kupfer D. Induction of the hepatic CYP2B and CYP3A enzymes by the proestrogenic pesticide methoxychlor and DDT in the rat. J. Biochem. Molec. Toxicol 1995; 10: 51–61, Effect on methoxychlor metabolism[CSA]
  • Li H.-C., Kupfer D. Mechanism of induction of rat hepatic CYP2B and 3A by the pesticide methoxychlor. J. Biochem. Molec. Toxicol 1998; 12: 315–323, [CROSSREF], [CSA]
  • Lim C. K., Yuan Z.-X., Lamb J.H., White I. N. H., De Matteis F., Smith L. L. A comparative study of tamoxifen metabolism in female rats, mouse and human liver microsmes. Carcinogenesis 1994; 15: 589–593, [INFOTRIEVE], [CSA]
  • Malet C., Compel A., Spritzer P., Bricout N., Yaneva H., Mowszowicz I., Kuttenn F., Mayvais-Jarvis P. Tamoxifen and hydroxytamoxifen isomers versus estradiol effects on normal human breast cancer cells in culture. Cancer Res 1988; 48: 7193–7199, [INFOTRIEVE], [CSA]
  • Mani C., Gelboin H. V., Park S. S., Pierce R., Parkinson A., Kupfer D. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. Drug Metab. Dispos 1993a; 21: 645–656, I. Cytochrome P-450-catalyzed N‐demethylation and 4-hydroxylation[INFOTRIEVE], [CSA]
  • Mani C., Hodgson E., Kupfer D. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. Drug Metab. Dispos 1993b; 21: 657–661, II. Flavin-containing monooxygenases mediated N-oxidation[INFOTRIEVE], [CSA]
  • Mani C., Kupfer D. Cytochrome P-450 mediated activation and irreversible binding of the antiestrogen tamoxifen to proteins in rat and human liver: possible involvement of flavin-containing monooxygenases in tamoxifen activation. Cancer Res 1991; 51: 6052–6058, [INFOTRIEVE], [CSA]
  • Mani C., Pierce R., Parkinson A., Kupfer D. Involvement of cytochrome P-4503A in catalysis of tamoxifen activation and covalent binding to rat and human liver microsomes. Carcinogenesis 1994; 15: 2715–2720, [INFOTRIEVE], [CSA]
  • McCague R., Seago A. Aspects of metabolism of tamoxifen by rat liver microsomes. Biochem. Pharmacol 1986; 35: 827–834, [INFOTRIEVE], [CROSSREF], [CSA]
  • Metcalf R. L. The Future of Insecticides. R. L. Metcalf, J. J. McKelevey. Wiley, New York 1976; 223–285
  • Osterhout J. M., Struck R. F., Nelson J. A. Estrogenic activities of methoxychlor metabolites. Biochem. Pharmacol 1981; 30: 2869–2871, [CROSSREF], [CSA]
  • O'Regan R. M., Cisneros A., England G. M., MacGregor J. L., Muenzner H. D., Assikis V. J., Bilimoria M. M., Piette M., Dragan Y. P., Pitot H. C. Effects of antiestrogens tamoxifen, toremifene, and ICI 182, 780 in endometrial cancer growth. J. Natl. Cancer Inst 1998; 90: 1552–1558, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Parte P., Kupfer D. Oxidation of tamoxifen by human flavin-containing monooxygenase (FMO) 1 and FMO3 to tamoxifen-N-oxide and its novel reduction back to tamoxifen by human cytochromes P450 and hemoglobin. Drug Metab. Dispos 2005; 33: 1446–1452, [INFOTRIEVE], [CROSSREF], [CSA]
  • Pathak D. N., Pongracz K., Bodell W. J. Microsomal and peroxidase activation of 4-hydroxy-tamoxifen to form DNA adducts: comparison with DNA adducts formed in Sprague-Dawley rats treated with tamoxifen. Carcinogenesis 1995; 16: 11–15, [INFOTRIEVE], [CSA]
  • Phillips D. H., Carmichael P. L., Hewer A., Kole K. J., Poon G. K. A-Hydroxytamoxifen, a metabolite of tamoxifen with exceptionally high DNA-binding activity in rat hepatocytes. Cancer Res 1994; 54: 5518–5522, [INFOTRIEVE], [CSA]
  • Poon G. K., Chui Y. C., McCague R., Lonning P. E., Feng R., Rowlands M. G., Jarman M. Analysis of Phase I and Phase II metabolites of tamoxifen in breast cancer patients. Drug Metab. Dispos 1993; 21: 1119–1124, [INFOTRIEVE], [CSA]
  • Poon G. K., Walter B., Lonning P. E., Holten M. N., McCague R. Identification of tamoxifen metabolites in human hepG2 cell line, human liver homogenate and patients on long-term therapy for breast cancer. Drug Metab. Dispos 1995; 23: 377–382, [INFOTRIEVE], [CSA]
  • Randernath K., Moorthy B., Mabon N., Sriram P. Tamoxifen: evidence by 32P-postlabeling and use of metabolic inhibitors for two distinct pathways leading to mouse hepatic DNA adduct formation and identification of 4-hydroxytamoxifen as a proximate metabolite. Carcinogenesis 1994; 15: 2087–2094, [CSA]
  • Reunitz P. C. Rabbit hepatic microsomal O-demethylation of chlorotrianisene. Drug Metab. Dispos 1978; 6: 478–483, [CSA]
  • Reunitz P. C., Bagley J. R., Pape C. W. Some chemical and biochemical aspects of liver microsomal metabolism of tamoxifen. Drug Metab. Dispos 1984; 12: 478–483, [CSA]
  • Reunitz P. C., Toledo M. M. Chemical and biochemical characteristics of O-demethylation of chlorotrianisene in the rat. Biochem. Pharmacol 1981; 30: 2203–2207, [CROSSREF], [CSA]
  • Smith L. L., Brown K., Carthew P., Lim C. K., Martin E. A., Styles J., White I. N. H. Chemoprevention of breast cancer by tamoxifen: risks and opportunities. Crit. Rev. Toxicol 2000; 30: 571–594, [INFOTRIEVE], [CSA]
  • Stresser D. M., Kupfer D. Catalytic characteristics of CYP3A4: Requirements for phenolic function in orthohydroxylation of estradiol and O-demethylated methoxychlor. Biochemistry 1997; 36: 2203–2210, [INFOTRIEVE], [CROSSREF], [CSA]
  • Sueyoshi H., Kawamoto T., Zelko I., Honkakaski P., Negishi M. The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene. J. Biol. Chem 1991; 274: 6043–6046, [CROSSREF], [CSA]
  • Sueyoshi H., Negishi M. Phenobarbital response elements of cytochrome P450 genes and nuclear receptors. Ann. Rev. Pharmacol. Toxicol 2001; 41: 123–143, [CSA]
  • Vancutsem P. M., Lazarus P., Williams G. M. Frequent and specific mutations of the rat p53 gene in hepatocarcinomas induced by tamoxifen. Cancer Res 1993; 54: 3864–3867, [CSA]
  • Williams G. M., Latropoulos M. J., Djordjevic M. W., Kaltenberg O. P. The triphenylethylene drug tamoxifen is a strong carcinogen in the rat. Carcinogenesis 1993; 14: 315–317, [INFOTRIEVE], [CSA]
  • Zhang F., Fan P. W., Lie X., Shen L., vanBreeman R.B., Bolton J.L. Synthesis and reactivity of a potential carcinogenic metabolite of tamoxifen: 3,4-dihydroxytamoxifen-o-quinone. Chem. Res. Toxicol 2000; 13: 53–62, [INFOTRIEVE], [CROSSREF], [CSA]
  • Zhou L. X., Dehal S. S., Kufper D., Morrell S., McKenzie B. A., Eccleston E. D., Jr., Holtzman J. L. Cytochrome P450 catalyzed covalent binding of methoxychlor to rat hepatic, microsomal iodothyronine 5′-monodeiodinase, type I: does exposure to methoxychlor disrupt thyroid hormone metabolism?. Arch. Biochem. Biophys 1995; 322: 390–394, [INFOTRIEVE], [CROSSREF], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.