510
Views
42
CrossRef citations to date
0
Altmetric
Research Article

The Role of Flavin-Containing Monooxygenase (FMO) in the Metabolism of Tamoxifen and Other Tertiary Amines

, , &
Pages 139-147 | Published online: 09 Oct 2008

REFERENCES

  • Boocock D. J., Brown K., Gibbs A. H., Sanchez E., Turteltaub K. W., White I. N. Identification of human CYP forms involved in the activation of tamoxifen and irreversible binding to DNA. Carcinogenesis 2002; 23: 1897–1902, [INFOTRIEVE], [CSA]
  • Cashman J. R. Structural and catalytic properties of the mammalian flavin-containing monooxygenase. Chem. Res. Toxicol 1995; 8: 165–181, [CROSSREF], [CSA]
  • Cashman J. R. Human flavin-containing monooxygenase (form 3): polymorphisms and variations in drug metabolism. Pharmacogenomics 2002; 3: 325–339, [INFOTRIEVE], [CROSSREF], [CSA]
  • Cashman J. R., Park S. B., Yang Z. C., Washington C. B., Gomez D. Y., Giacomini K. M., Brett C. M. Chemical, enzymatic, and human enantioselective S-oxygenation of cimetidine. Drug Metab. Dispos 1993; 21: 587–597, [INFOTRIEVE], [CSA]
  • Cashman J. R., Zhang J. Interindividual differences of human flavin-containing monooxygenase 3: genetic polymorphisms and functional variation. Drug Metab. Dispos 2002; 30: 1043–1052, [INFOTRIEVE], [CROSSREF], [CSA]
  • Dehal S. S., Brodie A. M. H., Kupfer D. The aromatase inactivator 4-hydroxyandrostenedione (4-OH-A) inhibits tamoxifen metabolism by rat hepatic cytochrome P-450 3A: potential for drug-drug interaction of tamoxifen and 4-OH-A in combined anti-breast cancer therapy. Drug Metab. Dispos 1999; 27: 389–394, [INFOTRIEVE], [CSA]
  • Dehal S. S., Kupfer D. Evidence that the catechol 3,4-dihydroxytamoxifen is a proximate intermediate to the reactive species binding covalently to proteins. Cancer Res 1996; 56: 1283–1290, [INFOTRIEVE], [CSA]
  • Dehal S. S., Kupfer D. CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res 1997; 57: 3402–3406, [INFOTRIEVE], [CSA]
  • Dehal S. S., Kupfer D. Cytochrome P-450 3A and 2D6 catalyze ortho hydroxylation of 4‐hydroxytamoxifen and 3-hydroxytamoxifen (Droloxifene) yielding tamoxifen catechol: involvement of catechols in covalent binding to hepatic proteins. Drug Metab. Dispos 1999; 27: 681–688, [INFOTRIEVE], [CSA]
  • Desta Z., Ward B. A., Soukhova N. V., Floackhart D. A. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J. Pharmcol. Exptl. Ther 2004; 310: 1062–1075, [CROSSREF], [CSA]
  • Dolphin D. T., Beckett D. J., Janmohamed A., Cullingford T. E., Smith R. L., Shephard E. A., Phillips I. R. The flavin-containing monooxygenase 2 gene (FMO2) of humans, but not of other primates, encodes a truncated, nonfunctional protein. J. Biol. Chem 1998; 272: 30599–30607, [CROSSREF], [CSA]
  • Furnes B., Feng J., Sommer S. S., Schlenk D. Identification of novel variants of the flavin-containing monooxygenase gene family in African Americans. Drug Metab. Dispos 2003; 31: 187–193, [INFOTRIEVE], [CROSSREF], [CSA]
  • Furnes B., Schlenk D. Evaluation of xenobiotic N- and S- oxidation by variant flavin-containing monooxygenase 1 (FMO1) enzymes. Toxicol. Sci 2004; 78: 196–203, [INFOTRIEVE], [CROSSREF], [CSA]
  • Greenman J., Duffield J., Spencer P., Rosenberg M., Corry D., Saad S., Lenton P., Majerus G., Nachnani S., El-Maaytah M. Study on the organoleptic intensity scale for measuring oral malodor. J. Dent. Res 2004; 83: 81–85, [INFOTRIEVE], [CSA]
  • Henderson M. C., Krueger S. K., Stevens J. F., Williams D. E. Human flavin-containing monooxygenase form 2 S-oxygenation: sulfenic acid formation from thioureas and oxidation of glutathione. Chem. Res. Toxicol 2004; 17: 633–640, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hernandez D., Addou S., Lee D., Orengo C., Shephard E. A., Phillips I. R. Trimethylaminuria and a human FMO3 mutation database. Hum. Mutat 2003; 22: 209–213, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hines R. N., Cashman J. R., Philpot R. M., Williams D. E., Ziegler D. M. The mammalian flavin-containing monooxygenases: molecular characterization and regulation of expression. Toxicol. Appl. Pharmacol 1994; 125: 1–6, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hines R. N., Luo Z., Hopp K. A., Cabacungan E. T., Koukouritaki S. B., McCarver D. G. Genetic variability at the human FMO1 locus: significance of a basal promoter Yin Yang 1 element polymorphism. (FMO1*6). J. Pharmacol. Exptl. Ther 2003; 306: 1210–1218, [CROSSREF], [CSA]
  • Hines R. N., McCarver D. G. The ontogeny of human drug metabolizing enzymes: phase I oxidative enzymes. J. Pharmacol. Exptl. Therap 2002; 300: 355–360, [CROSSREF], [CSA]
  • Hisamuddin I. M., Wehbi M. A., Chao A., Wyre H. W., Hylind L. M., Giardiello F. M., Yang V. W. Genetic polymorphisms of human flavin monooxygenase 3 in sulindac-mediated primary chemoprevention of familial adenomatous polyposis. Clin. Cancer Res 2004; 10: 8357–8362, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hodgson E., Rose R. L., Cao Y., Dehal S. S., Kupfer D. Flavin-containing monooxygenase isoform specificity for the N-oxidation of tamoxifen determined by product measurement and NADPH oxidation. J. Biochem. Molec. Toxicol 2000; 14: 118–120, [CROSSREF], [CSA]
  • Hu Y., Dehal S. S., Hynd G., Jones G. B., Kupfer D. CYP2D6-mediated catalysis of tamoxifen aromatic hydroxylation with an NIH shift: similar hydroxylation mechanism in chicken, rat and human liver microsomes. Xenobiotica 2003; 33: 141–151, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kang J.-H., Chung W.-G., Lee K.-H., Park C.-S., Kang J.-S., Shin I.-C., Roh H. K., Dong M. S., Baek H. M., Cha Y. N. Phenotypes of flavin-containing monooxygenase activity determined by ranitidine N-oxidation are positively correlated with genotypes of linked FMO3 gene mutations in a Korean population. Pharmacogenetics 2000; 10: 67–78, [INFOTRIEVE], [CROSSREF], [CSA]
  • Katchamart S., Stresser D. S., Dehal S. S., Kupfer D., Williams D. E. Concurrent flavin-containing monooxygenase down regulation and cytochrome P-450 induction by dietary indoles in the rat: implications for drug-drug interactions. Drug Metab. Dispos 2000; 28: 930–936, [INFOTRIEVE], [CSA]
  • Kim S. Y., Laxmi Y. R., Suzuki N., Ogura K., Watabe T., Duffel M. W., Shibutani S. Formation of tamoxifen-DNA adducts via O-sulfonation, not O-acetylation, of {alpha}-hydroxytamoxifen in rat and human livers. Drug Metab. Dispos 2005; 33: 1673–1678, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kim S. Y., Suzuki N., Santosh Laxmi Y. R., Rieger R., Shitutani S. Alpha-hydroxylation of tamoxifen and toremifene by human and rat cytochrome P450 3A subfamily enzymes. Chem. Res. Toxicol 2003; 16: 1138–1144, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kisanga E. R., Gjerde J., Guerrieri-Gonzaga A., Pigatto R., Pesci-Feltri A., Robertson C., Serrano D., Pelosi G., Decensi A., Lien E. A. Tamoxifen and metabolite concentrations in serum and breast cancer tissue during three dose regimens in a randomized preoperative trial. Clin. Cancer Res 2004; 10: 2336–2343, [INFOTRIEVE], [CROSSREF], [CSA]
  • Koukouritaki S. B., Poch M. T., Cabacungan E. T., McCarver D. G., Hines R. N. Discovery of novel flavin-containing monooxygenase 3 (FMO3) single nucleotide polymorphisms and functional analysis of upstream haplotype variants. Molec. Pharmacol 2005; 68: 383–392, [CSA]
  • Koukouritaki S. B., Simpson P., Yeung C. K., Rettie A. E., Hines R. N. Human hepatic flavin-containing monooxygenase 1 (FMO1) and 3 (FMO3) developmental expression. Pediatr. Res 2002; 51: 236–243, [INFOTRIEVE], [CSA]
  • Krueger S. K., Siddens L. K., Henderson M. C., Andreasen E. A., Tanguay R. L., Pereira C. B., Cabacungan E. T., Nines R. N., Ardlie K., Williams D. E. Haplotype and functional analysis of four flavin-containing monooxygenase isoform 2 (FMO2) polymorphisms in Hispanics. Pharmacogenetics Genomics 2005; 15: 245–256, [CSA]
  • Krueger S. K., Siddens L. K., Martin S. R., Yu Z., Pereira C. B., Cabacungan E. T., Hines R. N., Ardlie K. G., Raucy J. L., Williams D. E. Differences in FMO2*1 allelic frequency between Hispanics of Puerto Rican and Mexican descent. Drug Metab. Dispos 2004; 32: 1337–1340, [INFOTRIEVE], [CROSSREF], [CSA]
  • Krueger S. K., Williams D. E. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol. Therap 2005; 106: 357–387, [CROSSREF], [CSA]
  • Krueger S. K., Williams D. E., Yueh M.-F., Martin S. R., Hines R. N., Raucy J. L., Dolphin C. T., Shephard E. A., Phillips I. R. Genetic polymorphisms of flavin-containing monooxygenase (FMO). Drug Metab. Rev 2002; 34: 523–532, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kupfer D., Dehal S. S. Tamoxifen metabolism by microsomal cytochrome P450 and flavin-containing monooxygenase. Meth. Enzymol 1996; 272: 152–163, [INFOTRIEVE], [CSA]
  • Kupfer D., Mani C., Lee C. A., Rifkind A. B. Induction of tamoxifen-4-hydroxylation by 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD), beta-naphthoflavone (beta NF), and phenobarbital (PB) in avian liver: identification of P450 TCDDAA as catalyst of 4-hydroxylation induced by TCDD and beta NF. Cancer Res 1994; 54: 3140–3144, [INFOTRIEVE], [CSA]
  • Lang D. H., Yeung C. K., Peter R. M., Ibarra C., Gasser R., Itagaki K., Philpot R. M., Rettie A. E. Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: selective catalysis by FMO3. Biochem. Pharmacol 1998; 56: 1005–1012, [INFOTRIEVE], [CROSSREF], [CSA]
  • Lien E. A., Solheim E., Ueland P. M. Distribution of tamoxifen and its metabolites in rat and human tissues during steady-state treatment. Cancer Res 1991; 51: 4837–4844, [INFOTRIEVE], [CSA]
  • Lim C. K., Yuan Z.-X., Lamb J. H., White I. N. H., de Matteis F., Smith L. L. A comparative study of tamoxifen metabolism in female rat, mouse and human liver microsomes. Carcinogenesis 1994; 15: 589–593, [INFOTRIEVE], [CSA]
  • Lim Y. C., Desta Z., Flockhart D. A., Skaar T. C. Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother. Pharmacol 2005; 55: 471–478, [INFOTRIEVE], [CROSSREF], [CSA]
  • Mani C., Gelboin H. V., Park S. S., Pearce R., Parkinson A., Kupfer D. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. I. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation. Drug Metab. Dispos 1993a; 21: 645–656, [INFOTRIEVE], [CSA]
  • Mani C., Hodgson E., Kupfer D. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. II. Flavin-containing monooxygenase-mediated N-oxidation. Drug Metab. Dispos 1993b; 21: 657–661, [INFOTRIEVE], [CSA]
  • Mani C., Kupfer D. Cytochrome P-450-mediated activation and irreversible binding of the antiestrogen tamoxifen to proteins in rat and human liver: possible involvement of flavin-containing monooxygenase in tamoxifen activation. Cancer Res 1991; 51: 6052–6058, [INFOTRIEVE], [CSA]
  • Mani C., Pearce R., Parkinson A., Kupfer D. Involvement of cytochrome P4503A in catalysis of tamoxifen activation and covalent binding to rat and human liver microsomes. Carcinogenesis 1994; 15: 2715–2720, [INFOTRIEVE], [CSA]
  • Mitchell S. C., Smith R. L. Trimethylaminuria: the fish malodor syndrome. Drug Metab. Dispos 2001; 29: 517–521, [INFOTRIEVE], [CSA]
  • Park S. B., Jacob P., III., Benowitz N. L., Cashman J. R. Stereoselective metabolism of (S)-(-)-nicotine in humans: formation of trans-(S)-(-)-nicotine N-1’-oxide. Chem. Res. Toxicol 1993; 6: 880–888, [INFOTRIEVE], [CROSSREF], [CSA]
  • Parte P., Kupfer D. Oxidation of tamoxifen by human flavin-containing monooxygenase (FMO) 1 and FMO3 to tamoxifen-N—oxide and its novel reduction back to tamoxifen by human cytochromes P450 and hemoglobin. Drug Metab. Dispos 2005; 33: 1446–1452, [INFOTRIEVE], [CROSSREF], [CSA]
  • Phillips D. H., Hewer A., Osborne M. R., Cole K. J., Churchill C., Arlt V. M. Organ specificity of DNA adduct formation by tamoxifen and alpha-hydroxytamoxifen in the rat: implications for understanding the mechanism(s) of tamoxifen carcinogenicity and for human risk assessment. Mutagenesis 2005; 20: 297–303, [INFOTRIEVE], [CROSSREF], [CSA]
  • Phillips I. R., Dolphin C. T., Clair P., Hadley M. R., Hutt A. J., McCombie R. R., Smith R. L., Shephard E. A. The molecular biology of the flavin-containing monooxygenase of man. Chem-Biol. Interact 1995; 96: 17–32, [INFOTRIEVE], [CROSSREF], [CSA]
  • Shehin-Johnson S., Williams D. E., Larsen-Su D., Stresser D. M., Hines R. N. Tissue-specific expression of flavin-containing monooxygenase (FMO) forms 1 and 2 in the rabbit. J. Pharmacol. Exptl. Therap 1995; 272: 1293–1299, [CSA]
  • Shibutani S., Suzuki N., Laxmi Y. R., Schild L. J., Divi R. L., Grollman A. P., Poirier M. C. Identification of tamoxifen-DNA adducts in monkeys treated with tamoxifen. Cancer Res 2003; 63: 4402–4406, [INFOTRIEVE], [CSA]
  • Tijet N., Boutros P. C., Moffat I. D., Okey A. B., Tuomisto J., Pohjanvirta R. Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries. Molec. Pharmacol 2006; 69: 140–153, [CSA]
  • White I. N. The tamoxifen dilemma. Carcinogenesis 1999; 20: 1153–1160, [INFOTRIEVE], [CSA]
  • Williams D. E. Factors regulating the activity of the rabbit lung flavin-containing monooxygenase. N-Oxidation of Drugs. Biochemistry, Pharmacology and Toxicology, P. Hlavica, L. A. Damani. Chapman & Hall, New York 1991; 91–105
  • Yeung C. K., Lang D. H., Thummel K. E., Rettie A. E. Immunoquantitation of FMO1 in human liver, kidney, and intestine. Drug Metab. Dispos 2000; 28: 1107–1111, [INFOTRIEVE], [CSA]
  • Ziegler D. M. Microsomal flavin-containing monooxygenase: oxygenation of nucleophilic nitrogen and sulfur compounds. Enzymatic Basis of Detoxication, W. B. Jakoby. Academic Press, New York 1980; 1: 201–227
  • Ziegler D. M. Flavin-containing monooxygenases: catalytic mechanism and substrate specificities. Drug Metab. Rev 1988; 19: 1–32, [INFOTRIEVE], [CSA]
  • Ziegler D. M. An overview of the mechanism, substrate specificities and structure of FMOs. Drug Metab. Rev 2002; 34: 503–511, [INFOTRIEVE], [CROSSREF], [CSA]
  • Ziegler D. M., Jollow D., Cook D. E. Properties of a purified liver microsomal mixed function amine oxidase. Flavins and Flavoproteins, H. Kamin, 1971; 507–522, 3rd International Symposium
  • Ziegler D. M., Mitchell C. H. Microsomal oxidase IV: properties of mixed-function amine oxidase isolated from pig liver microsomes. Arch. Biochem. Biophys 1972; 150: 116–125, [INFOTRIEVE], [CROSSREF], [CSA]
  • Ziegler D. M., Poulsen L. L. Hepatic microsomal mixed-function amine oxidase. Meth. Enzymol 1978; 52C: 142–151, [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.