154
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Biopolymers as promising vehicles for drug delivery to the brain

&
Pages 46-61 | Received 31 May 2023, Accepted 03 Nov 2023, Published online: 14 Nov 2023

References

  • Agrawal P, Singh RP, Sharma G, Mehata AK, Singh S, Rajesh CV, Pandey BL, Koch B, Muthu MS, Sonali. 2017. Bioadhesive micelles of d-α-tocopherol polyethylene glycol succinate 1000: synergism of chitosan and transferrin in targeted drug delivery. Colloids Surf B Biointerfaces. 152:277–288. doi: 10.1016/j.colsurfb.2017.01.021.
  • Ahmad N, Ahmad R, Alam MA, Ahmad FJ. 2018. Quantification and brain targeting of eugenol-loaded surface modified nanoparticles through intranasal route in the treatment of cerebral ischemia. Drug Res. 68(10):584–595. doi: 10.1055/a-0596-7288.
  • Aktaş Y, Yemisci M, Andrieux K, Gürsoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quiñoá E, Riguera R, Sargon MF, et al. 2005. Development and brain delivery of chitosan − PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem. 16(6):1503–1511. doi: 10.1021/bc050217o.
  • Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. 2005. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx. 2(4):554–571. doi: 10.1602/neurorx.2.4.554.
  • Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, Rotello VM, Prakash YS, Mukherjee P. 2010. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 10(7):2543–2548. doi: 10.1021/nl101140t.
  • Azadi A, Rouini MR, Hamidi M. 2015. Neuropharmacokinetic evaluation of methotrexate-loaded chitosan nanogels. Int J Biol Macromol. 79:326–335. doi: 10.1016/j.ijbiomac.2015.05.001.
  • Banks WA, Erickson MA. 2010. The blood–brain barrier and immune function and dysfunction. Neurobiol Dis. 37(1):26–32. doi: 10.1016/j.nbd.2009.07.031.
  • Barcia E, Boeva L, García-García L, Slowing K, Fernández-Carballido A, Casanova Y, Negro S. 2017. Nanotechnology-based drug delivery of ropinirole for Parkinson’s disease. Drug Deliv. 24(1):1112–1123. doi: 10.1080/10717544.2017.1359862.
  • Barral JM, Broadley SA, Schaffar G, Hartl FU. 2004, February. Roles of molecular chaperones in protein misfolding diseases. In Seminars in cell & developmental biology. Academic Press; vol. 15, no. 1; p. 17–29. doi: 10.1016/j.semcdb.2003.12.010.
  • Begley DJ. 2004. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 104(1):29–45. doi: 10.1016/j.pharmthera.2004.08.001.
  • Bhatia SK, Gurav R, Choi T-R, Jung H-R, Yang S-Y, Moon Y-M, Song H-S, Jeon J-M, Choi K-Y, Yang Y-H. 2019a. Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresour Technol. 271:306–315. doi: 10.1016/j.biortech.2018.09.122.
  • Bhatia SK, Gurav R, Choi T-R, Jung H-R, Yang S-Y, Song H-S, Jeon J-M, Kim J-S, Lee Y-K, Yang Y-H. 2019b. Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) production from engineered Ralstonia eutropha using synthetic and anaerobically digested food waste derived volatile fatty acids. Int J Biol Macromol. 133:1–10. doi: 10.1016/j.ijbiomac.2019.04.083.
  • Blasberg RG, Patlak C, Fenstermacher JD. 1975. Intrathecal chemotherapy: brain tissue profiles after ventriculocisternal perfusion. J Pharmacol Exp Ther. 195(1): 73–83.
  • Bodor N, Buchwald P. 1999. Recent advances in the brain targeting of neuropharmaceuticals by chemical delivery systems. Adv Drug Deliv Rev. 36(2–3):229–254. doi: 10.1016/s0169-409x(98)00090-8.
  • Bodor N, Buchwald P. 2001. Drug targeting by retrometabolic design: soft drugs and chemical delivery systems. J Recept Signal Transduct Res. 21(2–3):287–310. doi: 10.1081/rrs-100107431.
  • Bodor N, Kaminski JJ. 1987. Prodrugs and site-specific chemical delivery systems. Annu Rep Med Chem. 22:303–313.
  • Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I, Lindman S, Minogue AM, Thulin E, Walsh DM, Dawson KA, Linse S. 2008. Inhibition of amyloid β protein fibrillation by polymeric nanoparticles. J Am Chem Soc. 130(46):15437–15443.
  • Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I, Dawson KA, Linse S. 2010. Dual effect of amino modified polystyrene nanoparticles on amyloid β protein fibrillation. ACS Chem Neurosci, 1(4): 279–287. doi: 10.1021/ja8041806.
  • Caprifico AE, Foot PJ, Polycarpou E, Calabrese G. 2020. Overcoming the blood-brain barrier: functionalised chitosan nanocarriers. Pharmaceutics. 12(11):1013. doi: 10.3390/pharmaceutics12111013.
  • Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, et al. 2017. The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones. 22(4):601–611. doi: 10.1007/s12192-017-0787-8.
  • Carradori D, Balducci C, Re F, Brambilla D, Le Droumaguet B, Flores O, Gaudin A, Mura S, Forloni G, Ordoñez-Gutierrez L, et al. 2018. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomedicine. 14(2):609–618. doi: 10.1016/j.nano.2017.12.006.
  • Cerletti A, Drewe J, Fricker G, Eberle A, Huwyler J. 2000. Endocytosis and transcytosis of an immunoliposome-based brain drug delivery system. J Drug Target. 8(6):435–446. doi: 10.3109/10611860008997919.
  • Changyong C, Chae SY, Jae-Won N. 2006. Thermosensitive poly (N-isopropylacrylamide)-b-poly (-caprolactone) nanoparticles for efficient drug delivery system. Polymer. 47(13):4571–4580. doi: 10.1016/j.polymer.2006.05.011.
  • Chen T, Li C, Li Y, Yi X, Wang R, Lee SMY, Zheng Y. 2017. Small-sized mPEG–PLGA nanoparticles of Schisantherin A with sustained release for enhanced brain uptake and anti-parkinsonian activity. ACS Appl Mater Interfaces. 9(11):9516–9527. doi: 10.1021/acsami.7b01171.
  • Chu L, Wang A, Ni L, Yan X, Song Y, Zhao M, Sun K, Mu H, Liu S, Wu Z, et al. 2018. Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting. Drug Deliv. 25(1):1634–1641. doi: 10.1080/10717544.2018.1494226.
  • Crivori P, Cruciani G, Carrupt PA, Testa B. 2000. Predicting blood − brain barrier permeation from three-dimensional molecular structure. J Med Chem. 43(11):2204–2216. doi: 10.1021/jm990968+.
  • Dabur M, Loureiro JA, Pereira MC. 2020. Fluorinated molecules and nanotechnology: future ‘avengers’ against the Alzheimer’s disease? Int J Mol Sci. 21(8):2989. doi: 10.3390/ijms21082989.
  • Debnath K, Shekhar S, Kumar V, Jana NR, Jana NR. 2016. Efficient inhibition of protein aggregation, disintegration of aggregates, and lowering of cytotoxicity by green tea polyphenol-based self-assembled polymer nanoparticles. ACS Appl Mater Interfaces. 8(31):20309–20318. doi: 10.1021/acsami.6b06853.
  • Falahati M, Attar F, Sharifi M, Haertlé T, Berret JF, Khan RH, Saboury AA. 2019. A health concern regarding the protein corona, aggregation and disaggregation. Biochim Biophys Acta Gen Subj. 1863(5):971–991. doi: 10.1016/j.bbagen.2019.02.012.
  • Fazil M, Md S, Haque S, Kumar M, Baboota S, Kaur Sahni J, Ali J. 2012. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci. 47(1):6–15. doi: 10.1016/j.ejps.2012.04.013.
  • Fei LI, Perrett S. 2009. Effect of nanoparticles on protein folding and fibrillogenesis. Int J Mol Sci. 10(2):646–655. doi: 10.3390/ijms10020646.
  • Fernandes J, Ghate MV, Mallik SB, Lewis SA. 2018. Amino acid conjugated chitosan nanoparticles for the brain targeting of a model dipeptidyl peptidase-4 inhibitor. Int J Pharm. 547(1–2):563–571. doi: 10.1016/j.ijpharm.2018.06.031.
  • Gajbhiye KR, Gajbhiye V, Siddiqui IA, Pilla S, Soni V. 2017. Ascorbic acid tethered polymeric nanoparticles enable efficient brain delivery of galantamine: an in vitro-in vivo study. Sci Rep. 7(1):11086. doi: 10.1038/s41598-017-11611-4.
  • Gan CW, Feng SS. 2010. Transferrin-conjugated nanoparticles of poly (lactide)-D-α-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood–brain barrier. Biomaterials. 31(30):7748–7757. doi: 10.1016/j.biomaterials.2010.06.053.
  • Gelperina S, Maksimenko O, Khalansky A, Vanchugova L, Shipulo E, Abbasova K, Berdiev R, Wohlfart S, Chepurnova N, Kreuter J. 2010. Drug delivery to the brain using surfactant-coated poly (lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm. 74(2):157–163. doi: 10.1016/j.ejpb.2009.09.003.
  • George T, Brady MF. 2020. Ethylenediaminetetraacetic acid (EDTA). StatPearls. StatPearls Publishing.
  • Gholami L, Tafaghodi M, Abbasi B, Daroudi M, Kazemi Oskuee R. 2019. Preparation of superparamagnetic iron oxide/doxorubicin loaded chitosan nanoparticles as a promising glioblastoma theranostic tool. J Cell Physiol. 234(2):1547–1559. doi: 10.1002/jcp.27019.
  • Ghosh P, De P. 2020. Modulation of amyloid protein fibrillation by synthetic polymers: recent advances in the context of neurodegenerative diseases. ACS Appl Bio Mater. 3(10):6598–6625. doi: 10.1021/acsabm.0c01021.
  • Gronich N, Abernethy DR. 2009. Pharmacology across the aging continuum. Pharmacol Therapeut. :257–264. ISBN 9781416032915, doi:10.1016/B978-1-4160-3291-5.50023-8.
  • Gu J, Al-Bayati K, Ho EA. 2017. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug Deliv Transl Res. 7(4):497–506. doi: 10.1007/s13346-017-0368-5.
  • Guo B, Sheng Z, Kenry K, Hu D, Lin X, Xu S, Liu C, Zheng H, Liu B. 2017. Biocompatible conjugated polymer nanoparticles for highly efficient photoacoustic imaging of orthotopic brain tumors in the second near-infrared window. Mater Horiz. 4(6):1151–1156. doi: 10.1039/C7MH00672A.
  • Gupta J, Fatima MT, Islam Z, Khan RH, Uversky VN, Salahuddin P. 2019. Nanoparticle formulations in the diagnosis and therapy of Alzheimer’s disease. Int J Biol Macromol. 130:515–526. doi: 10.1016/j.ijbiomac.2019.02.156.
  • Ha CS, Cho WJ. 2002. Miscibility, properties, and biodegradability of microbial polyester containing blends. Progress Polym Sci. 27(4):759–809. doi: 10.1016/S0079-6700(01)00050-8.
  • Han HK, Amidon GL. 2000. Targeted prodrug design to optimize drug delivery. AAPS PharmSci. 2(1):E6–58. doi: 10.1208/ps020106.
  • Harbaugh RE, Saunders RL, Reeder RF. 1988. Use of implantable pumps for central nervous system drug infusions to treat neurological disease. Neurosurgery. 23(6):693–698. doi: 10.1227/00006123-198812000-00001.
  • Huang H, Chan J, Wittner M, Jelicks LA, Morris SA, Factor SM, Weiss LM, Braunstein VL, Bacchi CJ, Yarlett N, et al. 1999. Expression of cardiac cytokines and inducible form of nitric oxide synthase (NOS2) in Trypanosoma cruzi-infected mice. J Mol Cell Cardiol. 31(1):75–88. doi: 10.1006/jmcc.1998.0848.
  • Huang N, Lu S, Liu XG, Zhu J, Wang YJ, Liu RT. 2017. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice. Oncotarget. 8(46):81001–81013. doi: 10.18632/oncotarget.20944.
  • Irani M, Sadeghi GMM, Haririan I. 2017. A novel biocompatible drug delivery system of chitosan/temozolomide nanoparticles loaded PCL-PU nanofibers for sustained delivery of temozolomide. Int J Biol Macromol. 97:744–751. doi: 10.1016/j.ijbiomac.2017.01.073.
  • Iyer M, Mishra R, Han Y, Hopfinger AJ. 2002. Predicting blood–brain barrier partitioning of organic molecules using membrane–interaction QSAR analysis. Pharm Res. 19(11):1611–1621. doi: 10.1023/a:1020792909928.
  • Jahromi LP, Panah FM, Azadi A, Ashrafi H. 2019. A mechanistic investigation on methotrexate-loaded chitosan-based hydrogel nanoparticles intended for CNS drug delivery: Trojan horse effect or not? Int J Biol Macromol. 125:785–790. doi: 10.1016/j.ijbiomac.2018.12.093.
  • Jost WH, Angersbach D. 2005. Ropinirole, a non‐ergoline dopamine agonist. CNS Drug Rev. 11(3):253–272. doi: 10.1111/j.1527-3458.2005.tb00046.x.
  • Kale SN, Deore SL. 2016. Emulsion micro emulsion and nano emulsion: a review. SRP. 8(1):39–47. doi: 10.5530/srp.2017.1.8.
  • Kaur A, Jain S, Tiwary AK. 2008. Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: in vitro and in vivo evaluation. Acta Pharm. 58(1):61–74. doi: 10.2478/v10007-007-0045-1.
  • Kaur S, Manhas P, Swami A, Bhandari R, Sharma KK, Jain R, Kumar R, Pandey SK, Kuhad A, Sharma RK, et al. 2018. Bioengineered PLGA-chitosan nanoparticles for brain targeted intranasal delivery of antiepileptic TRH analogues. Chem Eng J. 346:630–639. doi: 10.1016/j.cej.2018.03.176.
  • Kaye CM, Nicholls B. 2000. Clinical pharmacokinetics of ropinirole. Clin Pharmacokinet. 39(4):243–254. doi: 10.2165/00003088-200039040-00001.
  • Kim JY, Choi WI, Kim YH, Tae G. 2013. Brain-targeted delivery of protein using chitosan-and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials. 34(4):1170–1178. doi: 10.1016/j.biomaterials.2012.09.047.
  • Klajnert B, Cortijo-Arellano M, Cladera J, Bryszewska M. 2006. Influence of dendrimer’s structure on its activity against amyloid fibril formation. Biochem Biophys Res Commun. 345(1):21–28. doi: 10.1016/j.bbrc.2006.04.041.
  • Kosaraju J, Gali CC, Khatwal RB, Dubala A, Chinni S, Holsinger RMD, Madhunapantula VSR, Muthureddy Nataraj SK, Basavan D. 2013. Saxagliptin: a dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer’s disease. Neuropharmacology. 72:291–300. doi: 10.1016/j.neuropharm.2013.04.008.
  • Kou L, Hou Y, Yao Q, Guo W, Wang G, Wang M, Fu Q, He Z, Ganapathy V, Sun J. 2017. L-Carnitine-conjugated nanoparticles to promote permeation across blood–brain barrier and to target glioma cells for drug delivery via the novel organic cation/carnitine transporter OCTN2. Artif Cells Nanomed Biotechnol. 46(8):1–12. doi: 10.1080/21691401.2017.1384385.
  • Kreuter J, Petrov VE, Kharkevich DA, Alyautdin RN. 1997. Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood–brain barrier using surfactant-coated nanoparticles. J Controlled Release. 49(1):81–87. doi: 10.1016/S0168-3659(97)00061-8.
  • Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B, Alyautdin R, von Briesen H, Begley DJ. 2003. Direct evidence that polysorbate-80-coated poly (butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res. 20(3):409–416. doi: 10.1023/a:1022604120952.
  • Krewson CE, Klarman ML, Saltzman WM. 1995. Distribution of nerve growth factor following direct delivery to brain interstitium. Brain Res. 680(1–2):196–206. doi: 10.1016/0006-8993(95)00261-n.
  • Kubek MJ, Domb AJ, Veronesi MC. 2009. Attenuation of kindled seizures by intranasal delivery of neuropeptide-loaded nanoparticles. Neurotherapeutics. 6(2):359–371. doi: 10.1016/j.nurt.2009.02.001.
  • Küçüktürkmen B, Devrim B, Saka OM, Yilmaz Ş, Arsoy T, Bozkir A. 2017. Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells. Drug Dev Ind Pharm. 43(1):12–21. doi: 10.1080/03639045.2016.1200069.
  • Kulkarni AD, Patel HM, Surana SJ, Vanjari YH, Belgamwar VS, Pardeshi CV. 2017. N, N, N-Trimethyl chitosan: an advanced polymer with myriad of opportunities in nanomedicine. Carbohydr Polym. 157:875–902. doi: 10.1016/j.carbpol.2016.10.041.
  • Kumar P, Wu H, McBride JL, Jung K-E, Kim MH, Davidson BL, Lee SK, Shankar P, Manjunath N. 2007. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 448(7149):39–43. doi: 10.1038/nature05901.
  • Kuo YC, Tsai HC. 2018. Rosmarinic acid-and curcumin-loaded polyacrylamide-cardiolipin-poly (lactide-co-glycolide) nanoparticles with conjugated 83-14 monoclonal antibody to protect β-amyloid-insulted neurons. Mater Sci Eng C Mater Biol Appl. 91:445–457. doi: 10.1016/j.msec.2018.05.062.
  • Kurakhmaeva KB, Voronina TA, Kapica IG, Kreuter J, Nerobkova LN, Seredenin SB, Balabanian VY, Alyautdin RN. 2008. Antiparkinsonian effect of nerve growth factor adsorbed on polybutylcyanoacrylate nanoparticles coated with polysorbate-80. Bull Exp Biol Med. 145(2):259–262. doi: 10.1007/s10517-008-0065-y.
  • Lambert DM. 2000. Rationale and applications of lipids as prodrug carriers. Eur J Pharm Sci. 11(Suppl 2): S15–S27. doi: 10.1016/s0928-0987(00)00161-5.
  • Lee CC, Nayak A, Sethuraman A, Belfort G, McRae GJ. 2007. A three-stage kinetic model of amyloid fibrillation. Biophys J. 92(10):3448–3458. doi: 10.1529/biophysj.106.098608.
  • Li H, Tong Y, Bai L, Ye L, Zhong L, Duan X, Zhu Y. 2018. Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma. Int J Biol Macromol. 107(Pt A):204–211. doi: 10.1016/j.ijbiomac.2017.08.155.
  • Li J, Feng L, Fan L, Zha Y, Guo L, Zhang Q, Chen J, Pang Z, Wang Y, Jiang X, et al. 2011. Targeting the brain with PEG–PLGA nanoparticles modified with phage-displayed peptides. Biomaterials. 32(21):4943–4950. doi: 10.1016/j.biomaterials.2011.03.031.
  • Li S, Feng Y, Li Y, Feng W, Yoshino K. 2016. Transparent and flexible films of horizontally aligned carbon nanotube/polyimide composites with highly anisotropic mechanical, thermal, and electrical properties. Carbon. 109:131–140. doi: 10.1016/j.carbon.2016.07.052.
  • Liang J, Gao C, Zhu Y, Ling C, Wang Q, Huang Y, Qin J, Wang J, Lu W, Wang J. 2018. Natural brain penetration enhancer-modified albumin nanoparticles for glioma targeting delivery. ACS Appl Mater Interfaces. 10(36):30201–30213. doi: 10.1021/acsami.8b11782.
  • Liu JL, Li J, Zhang LY, Zhang PL, Zhou JL, Liu B. 2017. Preparation of N, N, N-trimethyl chitosan-functionalized retinoic acid-loaded lipid nanoparticles for enhanced drug delivery to glioblastoma. Trop J Pharm Res. 16(8):1765–1772. doi: 10.4314/tjpr.v16i8.3.
  • Liu S, Yang S, Ho PC. 2018. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J Pharm Sci. 13(1):72–81. doi: 10.1016/j.ajps.2017.09.001.
  • Liu Z, Ren G, Zhang T, Yang Z. 2009. Action potential changes associated with the inhibitory effects on voltage-gated sodium current of hippocampal CA1 neurons by silver nanoparticles. Toxicology. 264(3):179–184. doi: 10.1016/j.tox.2009.08.005.
  • Livingstone JR, Spolar RS, Record MT.Jr, 1991. Contribution to the thermodynamics of protein folding from the reduction in water-accessible nonpolar surface area. Biochemistry. 30(17):4237–4244. doi: 10.1021/bi00231a019.
  • Loo SCJ, Moore T, Banik B, Alexis F. 2010. Biomedical applications of hydroxyapatite nanoparticles. Curr Pharm Biotechnol. 11(4):333–342. doi: 10.2174/138920110791233343.
  • Lotz GP, Legleiter J. 2013. The role of amyloidogenic protein oligomerization in neurodegenerative disease. J Mol Med. 91(6):653–664. doi: 10.1007/s00109-013-1025-1.
  • Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian XQ. 2014. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine. 9:2241–2257. doi: 10.2147/IJN.S61288.
  • Madrid Y, Langer LF, Brem H, Langer R. 1991. New directions in the delivery of drugs and other substances to the central nervous system. Adv Pharmacol. 22:299–324.
  • Mansur AA, Caires AJ, Carvalho SM, Capanema NS, Carvalho IC, Mansur HS. 2019. Dual-functional supramolecular nanohybrids of quantum dot/biopolymer/chemotherapeutic drug for bioimaging and killing brain cancer cells in vitro. Colloids Surf B Biointerfaces. 184:110507. doi: 10.1016/j.colsurfb.2019.110507.
  • Mariana A, Mara L, Valle L, Claudio D. 2012. Gum Arabic: more than an edible emulsifier. In Products and Applications of Biopolymers. InTech. doi: 10.5772/33783.
  • Meesaragandla B, Karanth S, Janke U, Delcea M. 2020. Biopolymer-coated gold nanoparticles inhibit human insulin amyloid fibrillation. Sci Rep. 10(1):7862. doi: 10.1038/s41598-020-64010-7.
  • Milowska K, Gabryelak T, Bryszewska M, Caminade AM, Majoral JP. 2012. Phosphorus-containing dendrimers against α-synuclein fibril formation. Int J Biol Macromol. 50(4):1138–1143. doi: 10.1016/j.ijbiomac.2012.02.003.
  • Milowska K, Malachowska M, Gabryelak T. 2011. PAMAM G4 dendrimers affect the aggregation of α-synuclein. Int J Biol Macromol. 48(5):742–746. doi: 10.1016/j.ijbiomac.2011.02.021.
  • Mittal G, Carswell H, Brett R, Currie S, Kumar MR. 2011. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer’s pathology. J Control Release. 150(2):220–228. doi: 10.1016/j.jconrel.2010.11.013.
  • Miura Y, Onogi S, Fukuda T. 2012. Syntheses of sulfo-glycodendrimers using click chemistry and their biological evaluation. Molecules. 17(10):11877–11896. doi: 10.3390/molecules171011877.
  • Mooney R, Weng Y, Garcia E, Bhojane S, Smith-Powell L, Kim SU, Annala AJ, Aboody KS, Berlin JM. 2014. Conjugation of pH-responsive nanoparticles to neural stem cells improves intratumoral therapy. J Control Release. 191:82–89. doi: 10.1016/j.jconrel.2014.06.015.
  • Mulik RS, Monkkonen J, Juvonen RO, Mahadik KR, Paradkar AR. 2010. ApoE3 mediated poly (butyl) cyanoacrylate nanoparticles containing curcumin: study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model. Mol Pharm. 7(3):815–825. doi: 10.1021/mp900306x.
  • Nagpal K, Singh SK, Mishra DN. 2013. Optimization of brain targeted chitosan nanoparticles of Rivastigmine for improved efficacy and safety. Int J Biol Macromol. 59:72–83. doi: 10.1016/j.ijbiomac.2013.04.024.
  • Nejat H, Rabiee M, Varshochian R, Tahriri M, Jazayeri HE, Rajadas J, Ye H, Cui Z, Tayebi L. 2017. Preparation and characterization of cardamom extract-loaded gelatin nanoparticles as effective targeted drug delivery system to treat glioblastoma. React Funct Polym. 120:46–56. doi: 10.1016/j.reactfunctpolym.2017.09.008.
  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M. 2009. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 8(7):543–557. doi: 10.1038/nmat2442.
  • Newcomb EW, Zagzag D. 2009. The murine GL261 glioma experimental model to assess novel brain tumor treatments. In CNS cancer. Humana Press; p. 227–241. Cancer Drug Discovery and Development. Humana Press. doi: 10.1007/978-1-60327-553-8_12.
  • Ng KW, Khoo SPK, Heng BC, Setyawati MI, Tan EC, Zhao X, Xiong S, Fang W, Leong DT, Loo JSC. 2011. The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials. 32(32):8218–8225. doi: 10.1016/j.biomaterials.2011.07.036.
  • Orunoğlu M, Kaffashi A, Pehlivan SB, Şahin S, Söylemezoğlu F, Oğuz KK, Mut M. 2017. Effects of curcumin-loaded PLGA nanoparticles on the RG2 rat glioma model. Mater Sci Eng C Mater Biol Appl. 78:32–38. doi: 10.1016/j.msec.2017.03.292.
  • Pan L, Zhou J, Ju F, Zhu H. 2018. Intranasal delivery of α-asarone to the brain with lactoferrin-modified mPEG-PLA nanoparticles prepared by premix membrane emulsification. Drug Deliv Transl Res. 8(1):83–96. doi: 10.1007/s13346-017-0438-8.
  • Pardeshi CV, Belgamwar VS. 2016. Controlled synthesis of N, N, N-trimethyl chitosan for modulated bioadhesion and nasal membrane permeability. Int J Biol Macromol. 82:933–944. doi: 10.1016/j.ijbiomac.2015.11.012.
  • Pardeshi CV, Belgamwar VS. 2018. N, N, N-trimethyl chitosan modified flaxseed oil based mucoadhesive neuronanoemulsions for direct nose to brain drug delivery. Int J Biol Macromol. 120(Pt B):2560–2571. doi: 10.1016/j.ijbiomac.2018.09.032.
  • Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K. 2008. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett. 180(3):222–229. doi: 10.1016/j.toxlet.2008.06.869.
  • Petri B, Bootz A, Khalansky A, Hekmatara T, Müller R, Uhl R, Kreuter J, Gelperina S. 2007. Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly (butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Release. 117(1):51–58. doi: 10.1016/j.jconrel.2006.10.015.
  • Raj R, Wairkar S, Sridhar V, Gaud R. 2018. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: development, characterization and in vivo anti-Parkinson activity. Int J Biol Macromol. 109:27–35. doi: 10.1016/j.ijbiomac.2017.12.056.
  • Ramalho MJ, Sevin E, Gosselet F, Lima J, Coelho MAN, Loureiro JA, Pereira MC. 2018. Receptor-mediated PLGA nanoparticles for glioblastoma multiforme treatment. Int J Pharm. 545(1–2):84–92. doi: 10.1016/j.ijpharm.2018.04.062.
  • Ray S, Sinha P, Laha B, Maiti S, Bhattacharyya UK, Nayak AK. 2018. Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. J Drug Delivery Sci Technol. 48:21–29. doi: 10.1016/j.jddst.2018.08.016.
  • Rezaie P, Khoei S, Khoee S, Shirvalilou S, Mahdavi SR. 2018. Evaluation of combined effect of hyperthermia and ionizing radiation on cytotoxic damages induced by IUdR-loaded PCL-PEG-coated magnetic nanoparticles in spheroid culture of U87MG glioblastoma cell line. Int J Radiat Biol. 94(11):1027–1037. doi: 10.1080/09553002.2018.1495855.
  • Rocha S, Thünemann AF, do Carmo Pereira M, Coelho M, Möhwald H, Brezesinski G. 2008. Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophys Chem. 137(1):35–42. doi: 10.1016/j.bpc.2008.06.010.
  • Ruan C, Liu L, Lu Y, Zhang Y, He X, Chen X, Zhang Y, Chen Q, Guo Q, Sun T, et al. 2018. Substance P-modified human serum albumin nanoparticles loaded with paclitaxel for targeted therapy of glioma. Acta Pharm Sin B. 8(1):85–96. doi: 10.1016/j.apsb.2017.09.008.
  • Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. 2005. The antioxidant function of the p53 tumor suppressor. Nat Med. 11(12):1306–1313. doi: 10.1038/nm1320.
  • Sánchez-López E, Ettcheto M, Egea MA, Espina M, Cano A, Calpena AC, Camins A, Carmona N, Silva AM, Souto EB, et al. 2018. Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: in vitro and in vivo characterization. J Nanobiotechnology. 16(1):32. doi: 10.1186/s12951-018-0356-z.
  • Saucier-Sawyer JK, Deng Y, Seo YE, Cheng CJ, Zhang J, Quijano E, Saltzman WM. 2015. Systemic delivery of blood–brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue. J Drug Target. 23(7–8):736–749. doi: 10.3109/1061186X.2015.1065833.
  • Shemetov AA, Nabiev I, Sukhanova A. 2012. Molecular interaction of proteins and peptides with nanoparticles. ACS Nano. 6(6):4585–4602. doi: 10.1021/nn300415x.
  • Shen Y, Cao B, Snyder NR, Woeppel KM, Eles JR, Cui XT. 2018. ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood–brain barrier. J Nanobiotechnology. 16(1):13. doi: 10.1186/s12951-018-0340-7.
  • Sironmani A, Daniel K. 2011. Silver nanoparticles–universal multifunctional nanoparticles for bio sensing, imaging for diagnostics and targeted drug delivery for therapeutic applications. :463–484. In: Kapetanovic IM, editor. Drug discovery and development—present and future, InTech Publishers. doi: 10.5772/27047.
  • Skaat H, Belfort G, Margel S. 2009. Synthesis and characterization of fluorinated magnetic core–shell nanoparticles for inhibition of insulin amyloid fibril formation. Nanotechnology. 20(22):225106. doi: 10.1088/0957-4484/20/22/225106.
  • Skaat H, Chen R, Grinberg I, Margel S. 2012. Engineered polymer nanoparticles containing hydrophobic dipeptide for inhibition of amyloid-β fibrillation. Biomacromolecules. 13(9):2662–2670. doi: 10.1021/bm3011177.
  • Smith DA, Di L, Kerns EH. 2010. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 9(12):929–939. doi: 10.1038/nrd3287.
  • Song E, Gaudin A, King AR, Seo Y-E, Suh H-W, Deng Y, Cui J, Tietjen GT, Huttner A, Saltzman WM. 2017. Surface chemistry governs cellular tropism of nanoparticles in the brain. Nat Commun. 8(1):15322. doi: 10.1038/ncomms15322.
  • Soni S, Babbar AK, Sharma RK, Banerjee T, Maitra A. 2005. Pharmacoscintigraphic evaluation of polysorbate80-coated chitosan nanoparticles for brain targeting. Am J Drug Deliv. 3(3):205–212. doi: 10.2165/00137696-200503030-00004.
  • Sukhanova A, Poly S, Shemetov A, Bronstein I, Nabiev I. 2012. Implications of protein structure instability: from physiological to pathological secondary structure. Biopolymers. 97(8):577–588. doi: 10.1002/bip.22055.
  • Tahara K, Miyazaki Y, Kawashima Y, Kreuter J, Yamamoto H. 2011. Brain targeting with surface-modified poly (D, L-lactic-co-glycolic acid) nanoparticles delivered via carotid artery administration. Eur J Pharm Biopharm. 77(1):84–88. doi: 10.1016/j.ejpb.2010.11.002.
  • Takada Y, Vistica DT, Greig NH, Purdon D, Rapoport SI, Smith QR. 1992. Rapid high-affinity transport of a chemotherapeutic amino acid across the blood-brain barrier. Cancer Res. 52(8):2191–2196.
  • Tammam SN, Azzazy HM, Lamprecht A. 2018. Nuclear and cytoplasmic delivery of lactoferrin in glioma using chitosan nanoparticles: cellular location dependent-action of lactoferrin. Eur J Pharm Biopharm. 129:74–79. doi: 10.1016/j.ejpb.2018.05.027.
  • Tanaka M, Komi Y. 2015. Layers of structure and function in protein aggregation. Nat Chem Biol. 11(6):373–377. doi: 10.1038/nchembio.1818.
  • Thorne RG, Frey WH. 2001. Delivery of neurotrophic factors to the central nervous system. Clin Pharmacokinet. 40(12):907–946. doi: 10.2165/00003088-200140120-00003.
  • Tian X-h, Wei F, Wang T-x, Wang P, Lin X-n, Wang J, Wang D, Ren L. 2012. In vitro and in vivo studies on gelatin-siloxane nanoparticles conjugated with SynB peptide to increase drug delivery to the brain. Int J Nanomedicine. 7:1031–1041. doi: 10.2147/IJN.S26541.
  • Torres FG, Troncoso OP, Pisani A, Gatto F, Bardi G. 2019. Natural polysaccharide nanomaterials: an overview of their immunological properties. Int J Mol Sci. 20(20):5092. doi: 10.3390/ijms20205092.
  • Trapani A, De Giglio E, Cafagna D, Denora N, Agrimi G, Cassano T, Gaetani S, Cuomo V, Trapani G. 2011. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int J Pharm. 419(1–2):296–307. doi: 10.1016/j.ijpharm.2011.07.036.
  • Trotta V, Pavan B, Ferraro L, Beggiato S, Traini D, Des Reis LG, Scalia S, Dalpiaz A. 2018. Brain targeting of resveratrol by nasal administration of chitosan-coated lipid microparticles. Eur J Pharm Biopharm. 127:250–259. doi: 10.1016/j.ejpb.2018.02.010.
  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. 2009. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 69(22):8784–8789. doi: 10.1158/0008-5472.CAN-09-2496.
  • Turabee MH, Jeong TH, Ramalingam P, Kang JH, Ko YT. 2019. N, N, N-trimethyl chitosan embedded in situ Pluronic F127 hydrogel for the treatment of brain tumor. Carbohydr Polym. 203:302–309. doi: 10.1016/j.carbpol.2018.09.065.
  • Ulbrich K, Hekmatara T, Herbert E, Kreuter J. 2009. Transferrin-and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm. 71(2):251–256. doi: 10.1016/j.ejpb.2008.08.021.
  • Ulbrich K, Knobloch T, Kreuter J. 2011. Targeting the insulin receptor: nanoparticles for drug delivery across the blood–brain barrier (BBB). J Drug Target. 19(2):125–132. doi: 10.3109/10611861003734001.
  • Varan C, Bilensoy E. 2017. Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment. Beilstein J Nanotechnol. 8(1):1446–1456. doi: 10.3762/bjnano.8.144.
  • Verbeek, C. (Ed.). 2012. Products and applications of biopolymers. InTech. doi:10.5772/1802.
  • Verma A, Uzun O, Hu Y, Hu Y, Han H-S, Watson N, Chen S, Irvine DJ, Stellacci F. 2008. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater. 7(7):588–595. doi: 10.1038/nmat2202.
  • Wang X, Chi N, Tang X. 2008. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm. 70(3):735–740. doi: 10.1016/j.ejpb.2008.07.005.
  • Wang YY, Lai S, Suk J, Pace A, Cone R, Hanes J. 2008. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that "slip" through the human mucus barrier this work was supported in part by the NIH 5U01AI066726 (RC), NIH R21HL089816 and R01EB003558 (JH), Cystic Fibrosis Foundation (HANES08G0), and fellowships from the NSF (Y.-YW) and Croucher Foundation (SKL). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Angewandte Chemie-German Edition. 120(50):9872–9875. doi: 10.1002/ange.200803526.
  • Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL. 2010. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials. 31(5):908–915. doi: 10.1016/j.biomaterials.2009.09.104.
  • Wilson B, Samanta MK, Santhi K, Kumar KPS, Paramakrishnan N, Suresh B. 2008. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly (n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm. 70(1):75–84. doi: 10.1016/j.ejpb.2008.03.009.
  • Wong LR, Ho PC. 2018. Role of serum albumin as a nanoparticulate carrier for nose-to-brain delivery of R-flurbiprofen: implications for the treatment of Alzheimer’s disease. J Pharm Pharmacol. 70(1):59–69. doi: 10.1111/jphp.12836.
  • Xia H, Gao X, Gu G, Liu Z, Hu Q, Tu Y, Song Q, Yao L, Pang Z, Jiang X, et al. 2012. Penetratin-functionalized PEG–PLA nanoparticles for brain drug delivery. Int J Pharm. 436(1–2):840–850. doi: 10.1016/j.ijpharm.2012.07.029.
  • Xu Y, Asghar S, Yang L, Li H, Wang Z, Ping Q, Xiao Y. 2017. Lactoferrin-coated polysaccharide nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG for treating brain glioma. Carbohydr Polym. 157:419–428. doi: 10.1016/j.carbpol.2016.09.085.
  • Yao J, Zhou JP, Ping QN, Lu Y, Chen L. 2008. Distribution of nobiletin chitosan-based microemulsions in brain following IV injection in mice. Int J Pharm. 352(1-2):256–262. doi: 10.1016/j.ijpharm.2007.10.010.
  • You L, Wang J, Liu T, Zhang Y, Han X, Wang T, Guo S, Dong T, Xu J, Anderson GJ, et al. 2018. Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in parkinsonian mice. ACS Nano. 12(5):4123–4139. doi: 10.1021/acsnano.7b08172.
  • Zheng X, Zhang C, Guo Q, Wan X, Shao X, Liu Q, Zhang Q. 2017. Dual-functional nanoparticles for precise drug delivery to Alzheimer’s disease lesions: targeting mechanisms, pharmacodynamics and safety. Int J Pharm. 525(1):237–248. doi: 10.1016/j.ijpharm.2017.04.033.
  • Zou L, Tao Y, Payne G, Do L, Thomas T, Rodriguez J, Dou H. 2017. Targeted delivery of nano-PTX to the brain tumor-associated macrophages. Oncotarget. 8(4):6564–6578. doi: 10.18632/oncotarget.14169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.