Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 32, 2008 - Issue 1-2
113
Views
37
CrossRef citations to date
0
Altmetric
Original

Iron Chelators and Free Radical Scavengers in Naturally Occurring Polyhydroxylated 1,4-Naphthoquinones

, &
Pages 165-179 | Published online: 07 Jul 2009

REFERENCES

  • Britton G. The Biochemistry of Natural Pigments. Cambridge University Press, Cambridge 1983
  • O'Brien PJ. Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact 1991; 80(1)1–41
  • Ollinger K, Brunmark A. Effect of hydroxy substituent position on 1,4-naphthoquinone toxicity to rat hepatocytes. J Biol Chem 1991; 266(32)21496–21503
  • Anufriev VPh, Novikov VL, Maximov OB, Elyakov GB, Levitsky DO, Lebedev AV, Sadretdinov SM, Shvilkin AV, Afonskaya NI, Ruda MY, Cherpachenko NM. Synthesis of some hydroxynaphthazarins and their cardioprotective effects under ischemia-reperfusion in vivo. Bioorg Med Chem Lett 1998; 8(6)587–592
  • Shvilkin AV, Serebriakov LI, Tskitishvili OV, Sadretdinov SM, Kol'tsova EA, Maksimov OB, Mishchenko NP, Novikov VL, Levitskii DO, Ruda MI. [Effect of echinochrom on experimental myocardial reperfusion injury]. Kardiologiia 1991; 31(11)79–81
  • Zakirova AN, Ivanova MV, Golubiatnikov VB, Mishchenko NP, Kol'tsova EA, Fedoreev SA, Krasnovid NI, Lebedev AV. [Pharmacokinetics and clinical efficacy of histochrome in patients with acute myocardial infarction]. Eksp Klin Farmakol 1997; 60(6)21–24
  • Buimov GA, Maksimov IV, Perchatkin VA, Repin AN, Afanasiev SA, Markov VA, Karpov RS. [Effect of the bioantioxidant histochrome on myocardial injury in reperfusion therapy on patients with myocardial infarction]. Ter Arkh 2002; 74(8)12–16
  • Lebedev AV, Ivanova MV, Levitsky DO. Echinochrome, a naturally occurring iron chelator and free radical scavenger in artificial and natural membrane systems. Life Sci 2005; 76(8)863–875
  • Lebedev AV, Levitskaya EL, Tikhonova EV, Ivanova MV. Antioxidant properties, autooxidation, and mutagenic activity of echinochrome a compared with its etherified derivative. Biochemistry (Mosc) 2001; 66(8)885–893
  • de Meis L, Hasselbach HJ. Acetyl phosphate as substrate for Ca2+ uptake in skeletal muscle microsomes. Inhibition by alkali ions. J Biol Chem 1971; 246(15)4759–4763
  • Johnson JH, Pressman BC. Continuous recording of pH and pCa during calcium binding by muscle microsomes. Biochim Biophys Acta 1968; 153(2)500–503
  • Hitzel L, Watt AP, Locker KL. An increased throughput method for the determination of partition coefficients. Pharm Res 2000; 17(11)1389–1395
  • Yordanov ND, Christova AG. Quantitative spectrophotometric and EPR-determination of 1,1-diphenyl-2-picryl-hydrazyl (DPPH). Fresenius J Anal Chem 1997; 358(5)610–613
  • Foti MC, Johnson ER, Vinqvist MR, Wright JS, Barclay LR, Ingold KU. Naphthalene diols: a new class of antioxidants intramolecular hydrogen bonding in catechols, naphthalene diols, and their aryloxyl radicals. J Org Chem 2002; 67(15)5190–5196
  • Bielski BH, Cabelli DE. Highlights of current research involving superoxide and perhydroxyl radicals in aqueous solutions. Int J Radiat Biol 1991; 59(2)291–319
  • Bielski BH, Gebicki JM. Study of peroxidase mechanisms by pulse radiolysis. 3. The rate of reaction of O2- and HO2 radicals with horesradish peroxidase compound I. Biochim Biophys Acta 1974; 364(2)233–235
  • Kontoghiorghes GJ, Jackson MJ, Lunec J. In vitro screening of iron chelators using models of free radical damage. Free Radic Res Commun 1986; 2(1–2)115–124
  • Engelmann MD, Bobier RT, Hiatt T, Cheng IF. Variability of the Fenton reaction characteristics of the EDTA, DTPA, and citrate complexes of iron. Biometals 2003; 16(4)519–527
  • Micciche F, van Haveren J, Oostveen E, Laven J, Ming W, Okan OZ, van der Linde R. Oxidation of methyl linoleate in micellar solutions induced by the combination of iron(II)/ascorbic acid and iron(II)/H2O2. Arch Biochem Biophys 2005; 443(1–2)45–52
  • Farkas E, Enyedy EA, Zekany L, Deak G. Interaction between iron(II) and hydroxamic acids: oxidation of iron(II) to iron(III) by desferrioxamine B under anaerobic conditions. J Inorg Biochem 2001; 83(2–3)107–114
  • Enyedy EA, Pocsi I, Farkas E. Complexation of desferricoprogen with trivalent Fe, Al, Ga, In and divalent Fe, Ni, Cu, Zn metal ions: effects of the linking chain structure on the metal binding ability of hydroxamate based siderophores. J Inorg Biochem 2004; 98(11)1957–1966
  • van Acker SA, van den Berg DJ, Tromp MN, Griffioen DH, van Bennekom WP, van der Vijgh WJ, Bast A. Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med 1996; 20(3)331–342
  • Rice-Evans CA, Miller NJ, Panagia G. Antioxidant properties of phenolic compounds. Trends Plant Sci 1997; 2(4)152–159
  • Cunliffe CJ, Franklin TJ. Inhibition of prolyl 4-hydroxylase by hydroxyanthraquinones. Biochem J 1986; 239(2)311–315
  • Moridani MY, Pourahmad J, Bui H, Siraki A, O'Brien PJ. Dietary flavonoid iron complexes as cytoprotective superoxide radical scavengers. Free Radic Biol Med 2003; 34(2)243–253
  • Goupy P, Dufour C, Loonis M, Dangles O. Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical. J Agric Food Chem 2003; 51(3)615–622
  • Yokozawa T, Chen CP, Dong E, Tanaka T, Nonaka GI, Nishioka I. Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2 picrylhydrazyl radical. Biochem Pharmacol 1998; 56(2)213–222
  • Huang SS, Yeh SF, Hong CY. Effect of anthraquinone derivatives on lipid peroxidation in rat heart mitochondria: structure-activity relationship. J Nat Prod 1995; 58(9)1365–1371
  • Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG. Flavonoids as antioxidants. J Am Chem Soc 1994; 116(11)4846–4851
  • Matsuda H, Morikawa T, Toguchida I, Park JY, Harima S, Yoshikawa M. Antioxidant constituents from rhubarb: structural requirements of stilbenes for the activity and structures of two new anthraquinone glucosides. Bioorg Med Chem 2001; 9(1)41–50
  • Silva ID, Gaspar J, da Costa GG, Rodrigues AS, Laires A, Rueff J. Chemical features of flavonols affecting their genotoxicity. Potential implications in their use as therapeutical agents. Chem Biol Interact 2000; 124(1)29–51
  • Lebedev AV, Ivanova MV, Ruuge EK. How do calcium ions induce free-radical oxidation of hydroxy-1,4- naphthoquinone? Ca2+ stabilizes the naphthosemiquinone anion- radical of echinochrome A. Arch Biochem Biophys 2003; 413(2)191–198
  • Ollinger K, Buffinton GD, Ernster L, Cadenas E. Effect of superoxide dismutase on the autoxidation of substituted hydro- and semi-naphthoquinones. Chem Biol Interact 1990; 73(1)53–76
  • Munday R. Activation and detoxification of naphthoquinones by NAD(P)H: quinone oxidoreductase. Methods Enzymol 2004; 382: 364–380
  • Brown JP. A review of the genetic effects of naturally occurring flavonoids, anthraquinones and related compounds. Mutat Res 1980; 75(3)243–277
  • Moridani MY, Galati G, O'Brien PJ. Comparative quantitative structure toxicity relationships for flavonoids evaluated in isolated rat hepatocytes and HeLa tumor cells. Chem Biol Interact 2002; 139(3)251–264
  • Moridani MY, Siraki A, Chevaldina T, Scobie H, O'Brien PJ. Quantitative structure toxicity relationships for catechols in isolated rat hepatocytes. Chem Biol Interact 2004; 147(3)297–307

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.