Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 32, 2008 - Issue 1-2
853
Views
120
CrossRef citations to date
0
Altmetric
Original

The Role of Zinc, Copper and Iron in the Pathogenesis of Diabetes and Diabetic Complications: Therapeutic Effects by Chelators

, , &
Pages 135-145 | Published online: 07 Jul 2009

REFERENCES

  • Coleman JE. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 1992; 61: 897–946
  • Beutler E, Hoffbrand AV, Cook JD. Iron deficiency and overload. Hematology Am Soc Hematol Educ Program, 2003: 40–61
  • Cai L, Li XK, Song Y, Cherian MG. Essentiality, toxicology and chelation therapy of zinc and copper. Curr Med Chem 2005; 12(23)2753–2763
  • Wilson JG, Lindquist JH, Grambow SC, Crook ED, Maher JF. Potential role of increased Fe stores in diabetes. Am J Med Sci 2003; 325(6)332–339
  • Li WL, Zheng HC, Bukuru J, De Kimpe N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 2004; 92(1)1–21
  • Song Y, Wang J, Li XK, Cai L. Zinc and the diabetic heart. Biometals 2005; 18(4)325–332
  • Bhutta ZA. Iron and zinc deficiency in children in developing countries. BMJ 2007; 334(7585)104–105
  • Cai L, Koropatnick J, Cherian MG. Metallothionein protects DNA from copper-induced but not iron-induced cleavage in vitro. Chem Biol Interact 1995; 96(2)143–155
  • Cai L, Tsiapalis G, Cherian MG. Protective role of zinc-metallothionein on DNA damage in vitro by ferric nitrilotriacetate (Fe-NTA) and ferric salts. Chem Biol Interact 1998; 115(2)141–151
  • Cai L. Suppression of nitrative damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy. Free Radic Biol Med 2006; l41(6)851–861
  • Li X, Cai L, Feng WK. Diabetes and metallothionein. Mini Rev Med Chem 2007; 7(7)761–768
  • Haglund B, Ryckenberg K, Selinus O, Dahlquist G. Evidence of a relationship between childhood-onset type I diabetes and low groundwater concentration of zinc. Diabetes Care 1996; 19(8)873–875
  • Zhao HX, Mold MD, Stenhouse EA, Bird SC, Wright DE, Demaine AG, Millward BA. Drinking water composition and childhood-onset Type 1 diabetes mellitus in Devon and Cornwall, England. Diabet Med 2001; 18(9)709–717
  • Goldberg ED, Eshchenko VA, Bovt VD. Diabetogenic activity of chelators in some mammalian species. Endocrinologie 1990; 28(2)51–55
  • Goldberg ED, Eshchenko VA, Bovt VD. The diabetogenic and acidotropic effects of chelators. Exp Pathol 1991; 42(1)59–64
  • Kechrid Z, Bouzerna N, Zio MS. Effect of low zinc diet on (65)Zn turnover in non-insulin dependent diabetic mice. Diabetes Metab 2001; 27(5 Pt 1)580–583
  • Wang J, Song Y, Elsherif L, Song Z, Zhou G, Prabhu SD, Saari JT, Cai L. Cardiac metallothionein induction plays the major role in the prevention of diabetic cardiomyopathy by zinc supplementation. Circulation 2006; 113(4)544–554
  • Hayee MA, Mohammad QD, Haque A. Diabetic neuropathy and zinc therapy. Bangladesh Med Res Counc Bull 2005; 31(2)62–67
  • Sitasawad S, Deshpande M, Katdare M, Tirth S, Parab P. Beneficial effect of supplementation with copper sulfate on STZ-diabetic mice (IDDM). Diabetes Res Clin Pract 2001; 52(2)77–84
  • Cooper GJ, Phillips AR, Choong SY, Leonard BL, Crossman DJ, Brunton DH, Saafi L, Dissanayake AM, Cowan BR, Young AA, Occleshaw CJ, Chan YK, Leahy FE, Keogh GF, Gamble GD, Allen GR, Pope AJ, Boyd PD, Poppitt SD, Borg TK, Doughty RN, Baker JR. Regeneration of the heart in diabetes by selective copper chelation. Diabetes 2004; 53(9)2501–2508
  • Hamada Y, Nakashima E, Naruse K, Nakae M, Naiki M, Fujisawa H, Oiso Y, Hotta N, Nakamura J. A copper chelating agent suppresses carbonyl stress in diabetic rat lenses. J Diabetes Complications 2005; 19(6)328–334
  • Fernández-Real JM, Peñarroja G, Castro A, García-Bragado F, Hernández I, Ricart W. Blood letting in high-ferritin type 2 diabetes mellitus. Effects on insulin sensitivity and β-cell function. Diabetes 2002; 51(12)1000–1004
  • Fernandez-Real JM, Lopez-Bermejo A, Ricart W. Iron stores, blood donation, and insulin sensitivity and secretion. Clin Chem 2005; 51(7)1201–1205
  • Meyers DG, Strickland D, Maloley PA, Seburg JK, Wilson JE, McManus BF. Possible association of a reduction in cardiovascular events with blood donation. Heart 1997; 78(2)188–193
  • D'souza RF, Feakins R, Mears L, Sabin CA, Foster GR. Relationship between serum ferritin, hepatic iron staining, diabetes mellitus and fibrosis progression in patients with chronic hepatitis C. Aliment Pharmacol Ther 2005; 21(5)519–524
  • Rajpathak S, Ma J, Manson J, Willett WC, Hu FB. Iron intake and the risk of type 2 diabetes in women: a prospective cohort study. Diabetes Care 2006; 29(6)1370–1376
  • Wrede CE, Buettner R, Bollheimer LC, Scholmerich J, Palitzsch KD, Hellerbrand C. Association between serum ferritin and the insulin resistance syndrome in a representative population. Eur J Endocrinol 2006; 154(2)333–340
  • el-Hazmi MA, al-Swailem A, al-Fawaz I, Warsey AS, al-Swailem A. Diabetes mellitus in children suffering from β-thalassaemia. J Trop Pediatr 1994; 40(5)261–266
  • Gamberini MR, Fortini M, De Sanctis V, Gilli G, Testa MR. Diabetes mellitus and impaired glucose tolerance in thalassaemia major: incidence, prevalence, risk factors and survival in patients followed in the Ferrara Center. Pediatr Endocrinol Rev 2004; 2(Suppl 2)285–291
  • Qi L, van Dam RM, Rexrode K, Hu FB. Heme Fe from diet as a risk factor for coronary heart disease in women with type 2 diabetes. Diabetes Care 2007; 30(1)101–106
  • Kim BJ, Kim YH, Kim S, Kim JW, Koh JY, Oh SH, Lee MK, Kim KW, Lee MS. Zinc as a paracrine effector in pancreatic islet cell death. Diabetes 2000; 49(3)367–372
  • Wang T, Guo Z. Copper in medicine: homeostasis, chelation therapy and antitumor drug design. Curr Med Chem 2006; 13(5)525–537
  • Cameron NE, Cotter MA. Neurovascular dysfunction in diabetic rats. Potential contribution of autoxidation and free radicals examined using transition metal chelating agents. J Clin Invest 1995; 96(2)1159–1163
  • Keegan A, Cotter MA, Cameron NE. Effects of chelator treatment on aorta and corpus cavernosum from diabetic rats. Free Radic Biol Med 1999; 27(5–6)536–543
  • Gong D, Lu J, Chen X, Choong SY, Zhang S, Chan YK, Glyn-Jones S, Gamble GD, Phillips AR, Cooper GJ. Molecular changes evoked by triethylenetetramine treatment in the extracellular matrix of the heart and aorta in diabetic rats. Mol Pharmacol 2006; 70(6)2045–2051
  • Cutler P. Deferoxamine therapy in high-ferritin diabetes. Diabetes 1989; 38(10)1207–1210
  • Davis RE, McCann VJ, Nicol DJ. Influence of iron-deficiency anaemia on the glycosylated haemoglobin level in a patient with diabetes mellitus. Med J Aust 1983; 1(1)40–41
  • Lai TY, Lee GK, Chan WM, Lam DS. Rapid development of severe toxic retinopathy associated with continuous intravenous deferoxamine infusion. Br J Ophthalmol 2006; 90(2)243–244
  • Kontoghiorghes GJ, Nasseri-Sina P, Goddard JG, Barr JM, Nortey P, Sheppard LN. Safety of oral iron chelator L1. Lancet 1989; 2(8660)457–458
  • Kontoghiorghes GJ. Future chelation monotherapy and combination therapy strategies in thalassemia and other conditions. Comparison of deferiprone, deferoxamine, ICL670, GT56-252, L1NAll and starch deferoxamine polymers. Hemoglobin 2006; 30(2)329–347
  • Kontoghiorghes GJ, Eracleous E, Economides C, Kolnagou A. Advances in iron overload therapies. prospects for effective use of deferiprone (L1), deferoxamine, the new experimental chelators ICL670, GT56-252, L1NA11 and their combinations. Curr Med Chem 2005; 12(23)2663–2681
  • Borgna-Pignatti C, Cappellini MD, De Stefano P, Del Vecchio GC, Forni GL, Gamberini MR, Ghilardi R, Piga A, Romeo MA, Zhao H. Cnaan A Cardiac morbidity and mortality in deferoxamine- or deferiprone-treated patients with thalassemia major. Blood 2006; 107(9)3733–3737
  • De Sanctis V, D'Ascola G, Wonke B. The development of diabetes mellitus and chronic liver disease in long term chelated β thalassaemic patients. Postgrad Med J 1986; 62(731)831–836
  • Platis O, Anagnostopoulos G, Farmaki K, Posantzis M, Gotsis E, Tolis G. Glucose metabolism disorders improvement in patients with thalassaemia major after 24–36 months of intensive chelation therapy. Pediatr Endocrinol Rev 2004; 2(Suppl 2)279–281
  • Christoforidis A, Perifanis V, Athanassiou-Metaxa M. Combined chelation therapy improves glucose metabolism in patients with β-thalassaemia major. Br J Haematol 2006; 135(2)271–272
  • Christoforidis A, Perifanis V, Tsatra I, Vlachaki E, Athanassiou-Metaxa M. Evolution of OGTT in patients with β-thalassaemia major in relation to chelation therapy. Diabetes Res Clin Pract 2006; 76(1)6–11
  • Farmaki K, Angelopoulos N, Anagnostopoulos G, Gotsis E, Rombopoulos G, Tolis G. Effect of enhanced iron chelation therapy on glucose metabolism in patients with β thalassaemia major. Br J Haematol 2006; 134(4)438–444
  • Soinio M, Marniemi J, Laakso M, Pyorala K, Lehto S, Ronnemaa T. Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care 2007; 30(3)523–528
  • Saari JT. Copper deficiency and cardiovascular disease: role of peroxidation, glycation, and nitration. Can J Physiol Pharmacol 2000; 78(10)848–855
  • Frank A, Sell DR, Danielsson R, Fogarty JF, Monnier VM. A syndrome of molybdenosis, copper deficiency, and type 2 diabetes in the moose population of south-west Sweden. Sci Total Environ 2000; 249(1–3)123–131

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.