Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 48, 2024 - Issue 1
459
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Long Non-Coding RNA H19 Leads to Upregulation of γ-Globin Gene Expression during Erythroid Differentiation

, , , , , & show all
Pages 4-14 | Received 21 Jun 2023, Accepted 13 Nov 2023, Published online: 29 Feb 2024

References

  • Métais JY, Doerfler PA, Mayuranathan T, et al. Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Adv. 2019;3(21):3379–3392. doi: 10.1182/bloodadvances.2019000820.
  • Feng R, Mayuranathan T, Huang P, et al. Activation of γ-globin expression by hypoxia-inducible factor 1α. Nature. 2022;610(7933):783–790. doi: 10.1038/s41586-022-05312-w.
  • Esrick EB, Lehmann LE, Biffi A, et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N Engl J Med. 2021;384(3):205–215. doi: 10.1056/NEJMoa2029392.
  • Fu B, Liao J, Chen S, et al. CRISPR-Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia. Nat Med. 2022;28(8):1573–1580. doi: 10.1038/s41591-022-01906-z.
  • St Laurent G, Wahlestedt C, Kapranov P. The landscape of long noncoding RNA classification. Trends Genet. 2015;31(5):239–251. doi: 10.1016/j.tig.2015.03.007.
  • Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 2017;18(1):206. doi: 10.1186/s13059-017-1348-2.
  • Hirano T, Tsuruda T, Tanaka Y, et al. Long noncoding RNA CCDC26 as a modulator of transcriptional switching between fetal and embryonic globins. Biochim Biophys Acta Mol Cell Res. 2021;1868(3):118931. doi: 10.1016/j.bbamcr.2020.118931.
  • Ma SP, Xi HR, Gao XX, et al. Long noncoding RNA HBBP1 enhances γ-globin expression through the ETS transcription factor ELK1. Biochem Biophys Res Commun. 2021;552:157–163. doi: 10.1016/j.bbrc.2021.03.051.
  • Ivaldi MS, Diaz LF, Chakalova L, et al. Fetal γ-globin genes are regulated by the BGLT3 long noncoding RNA locus. Blood. 2018;132(18):1963–1973. doi: 10.1182/blood-2018-07-862003.
  • Han Y, Huang L, Zhou M, et al. Comparison of transcriptome profiles of nucleated red blood cells in cord blood between preterm and full-term neonates. Hematology. 2022;27(1):263–273. doi: 10.1080/16078454.2022.2029255.
  • Peng F, Li TT, Wang KL, et al. H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. Cell Death Dis. 2017;8(1):e2569. doi: 10.1038/cddis.2016.438.
  • Zhang Y, Zhu R, Wang J, et al. Upregulation of lncRNA H19 promotes nasopharyngeal carcinoma proliferation and metastasis in let-7 dependent manner. Artif Cells Nanomed Biotechnol. 201947(1):3854–3861. doi: 10.1080/21691401.2019.1669618.
  • Kou N, Liu S, Li X, et al. H19 facilitates tongue squamous cell carcinoma migration and invasion via sponging miR-let-7. Oncol Res. 2019;27(2):173–182. doi: 10.3727/096504018X15202945197589.
  • Yan L, Zhou J, Gao Y, et al. Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene. 2015;34(23):3076–3084. doi: 10.1038/onc.2014.236.
  • Ma C, Nong K, Zhu H, et al. H19 promotes pancreatic cancer metastasis by derepressing let-7's suppression on its target HMGA2-mediated EMT. Tumour Biol. 2014;35(9):9163–9169. doi: 10.1007/s13277-014-2185-5.
  • Wei Y, Liu Z, Fang J. H19 functions as a competing endogenous RNA to regulate human epidermal growth factor receptor expression by sequestering let7c in gastric cancer. Mol Med Rep. 2018;17(2):2600–2606.
  • Chen MJ, Deng J, Chen C, et al. LncRNA H19 promotes epithelial mesenchymal transition and metastasis of esophageal cancer via STAT3/EZH2 axis. Int J Biochem Cell Biol. 2019;; 113:27–36. doi: 10.1016/j.biocel.2019.05.011.
  • Zhang L, Yang Z, Huang W, et al. H19 potentiates let-7 family expression through reducing PTBP1 binding to their precursors in cholestasis. Cell Death Dis. 2019;10(3):168. doi: 10.1038/s41419-019-1423-6.
  • Tabano S, Colapietro P, Cetin I, et al. Epigenetic modulation of the IGF2/H19 imprinted domain in human embryonic and extra-embryonic compartments and its possible role in fetal growth restriction. Epigenetics. 2010;5(4):313–324. doi: 10.4161/epi.5.4.11637.
  • Noh JH, Kim KM, McClusky WG, et al. Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip Rev RNA. 2018;9(3):e1471. doi: 10.1002/wrna.1471.
  • Lee YT, de Vasconcellos JF, Yuan J, et al. LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo. Blood. 2013;122(6):1034–1041. doi: 10.1182/blood-2012-12-472308.
  • Zhan Y, Chen Z, Li Y, et al. Long non-coding RNA DANCR promotes malignant phenotypes of bladder cancer cells by modulating the miR-149/MSI2 axis as a ceRNA. J Exp Clin Cancer Res. 2018;37(1):273. doi: 10.1186/s13046-018-0921-1.
  • Cai X, Zhang X, Mo L, et al. LncRNA PCGEM1 promotes renal carcinoma progression by targeting miR-433-3p to regulate FGF2 expression. Cancer Biomark. 2020;27(4):493–504. doi: 10.3233/CBM-190669.
  • Ghafouri-Fard S, Esmaeili M, Taheri M. H19 lncRNA: Roles in tumorigenesis. Biomed Pharmacother. 2020;123:109774. doi: 10.1016/j.biopha.2019.109774.
  • Chen S, Liu D, Zhou Z, et al. Role of long non-coding RNA H19 in the development of osteoporosis. Mol Med. 2021;27(1):122. doi: 10.1186/s10020-021-00386-0.
  • Ghafouri-Fard S, Abak A, Talebi SF, et al. Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed Pharmacother. 2021;143:112132. doi: 10.1016/j.biopha.2021.112132.
  • Wang J, Ma X, Si H, et al. Role of long non-coding RNA H19 in therapy resistance of digestive system cancers. Mol Med. 2021;27(1):1. doi: 10.1186/s10020-020-00255-2.
  • Wang L, Qi L. The role and mechanism of long non-coding RNA H19 in stem cell osteogenic differentiation. Mol Med. 2021;27(1):86. doi: 10.1186/s10020-021-00350-y.
  • Wang Y, Sun X, Sun X. The functions of long non-coding RNA (lncRNA) H19 in the heart. Heart Lung Circ. 2022;31(3):341–349. doi: 10.1016/j.hlc.2021.10.022.
  • Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25(18):1915–1927. doi: 10.1101/gad.17446611.
  • Zhang R, Zhang L, Yu W. Genome-wide expression of non-coding RNA and global chromatin modification. Acta Biochim Biophys Sin). 2012;44(1):40–47. doi: 10.1093/abbs/gmr112.
  • Ren J, Fu J, Ma T, et al. LncRNA H19-elevated LIN28B promotes lung cancer progression through sequestering miR-196b. Cell Cycle. 2018;17(11):1372–1380. doi: 10.1080/15384101.2018.1482137.
  • Helsmoortel HH, De Moerloose B, Pieters T, et al. LIN28B is over-expressed in specific subtypes of pediatric leukemia and regulates lncRNA H19. Haematologica. 2016;101(6):e240-4–e244. doi: 10.3324/haematol.2016.143818.
  • Yang F, Ruan H, Li S, et al. Analysis of circRNAs and circRNA-associated competing endogenous RNA networks in β-thalassemia. Sci Rep. 2022;May 1612(1):8071. doi: 10.1038/s41598-022-12002-0.
  • Basak A, Munschauer M, Lareau CA, et al. Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation. Nat Genet. 2020;52(2):138–145. doi: 10.1038/s41588-019-0568-7.
  • Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322(5909):1839–1842. doi: 10.1126/science.1165409.
  • Gianni AM, Presta M, Polli E, et al. Preferential induction of fetal versus embryonic globin chains in human leukemic cell lines. Leuk Res. 1982;6(2):155–163. doi: 10.1016/0145-2126(82)90021-2.
  • Vinjamur DS, Bauer DE. Growing and genetically manipulating human umbilical cord blood-derived erythroid progenitor (HUDEP) cell lines. Meth mol biol. 2018;1698:275–284.
  • Yunhao L. GATAD2A deficiency reactivates fetal hemoglobin synthesis and reduces the Severity of β-thalassemia by downregulating MYB [PhD dissertation]. Southern Medical University; 2019.
  • Inoue A, Kuroyanagi Y, Terui K, et al. Negative regulation of gamma-globin gene expression by cyclic AMP-dependent pathway in erythroid cells. Exp Hematol. 2004;32(3):244–253. doi: 10.1016/j.exphem.2003.12.006.
  • Keefer JR, Schneidereith TA, Mays A, et al. Role of cyclic nucleotides in fetal hemoglobin induction in cultured CD34+ cells. Exp Hematol. 2006;34(9):1151–1161. doi: 10.1016/j.exphem.2006.03.018.
  • Dai Y, Shaikho EM, Perez J, et al. BCL2L1 is associated with γ-globin gene expression. Blood Adv. 2019;3(20):2995–3001. doi: 10.1182/bloodadvances.2019032243.
  • Rutherford TR, Clegg JB, Weatherall DJ. K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature. 1979;280(5718):164–165. doi: 10.1038/280164a0.
  • Hu CY, Zhang HJ, Fu CB, et al. [Effect of MiR-451a on erythroid differentiation of K562 cells under Hypoxia]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2020;Dec28(6):2071–2078.