Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 48, 2024 - Issue 2
115
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Genetic Variants Associated with the Risk of Stroke in Sickle Cell Anemia: Systematic Review and Meta-Analysis

, , , & ORCID Icon
Pages 101-112 | Received 22 Sep 2023, Accepted 01 Apr 2024, Published online: 18 Apr 2024

References

  • Platt OS, Brambilla DJ, Rosse WF, et al. Mortality in sickle cell disease – life expectancy and risk factors for early death. N Engl J Med. 1994;Jun 9330(23):1639–1644. doi: 10.1056/NEJM199406093302303.
  • Piel FB, Hay SI, Gupta S, et al. Global burden of sickle cell anaemia in children under five, 2010–2050: modelling based on demographics, excess mortality, and interventions. PLoS Med. 2013;10(7):e1001484. Osrin D, editor. Jul 16 doi: 10.1371/journal.pmed.1001484.
  • Sedrak A, Kondamudi NP. Sickle cell disease. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. [cited 2023 Aug 8]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK482384/
  • Cerebrovascular Accidents in Sickle Cell Disease: Rates and Risk Factors - ScienceDirect. [Internet]. [cited 2022. May 28]. Available from: https://www.sciencedirect.com/science/article/pii/S0006497120549082?via%3Dihub.
  • Piel FB, Steinberg MH, Rees DC. Sickle cell disease. N Engl J Med. 2017;Apr 20376(16):1561–1573. doi: 10.1056/NEJMra1510865.
  • Brewin JN, Smith AE, Cook R, et al. Genetic analysis of patients with sickle cell anemia and stroke before 4 years of age suggest an important role for apoliprotein E. Circ Genom Precis Med. 2020;Oct13(5):531–540. doi: 10.1161/CIRCGEN.120.003025.
  • de Melo TRF, Ercolin L dos R, Chelucci RC, et al. Sickle cell disease – current treatment and new therapeutical approaches. In: Munshi A, editor. Inherited Hemoglobin Disorders [Internet]. InTechOpen; 2015. [cited 2022 May 28]. Available from: http://www.intechopen.com/books/inherited-hemoglobin-disorders/sickle-cell-disease-current-treatment-and-new-therapeutical-approaches; doi: 10.5772/59742.
  • Nicolau M, Vargas S, Silva M, et al. Genetic modulators of fetal hemoglobin expression and ischemic stroke occurrence in African descendant children with sickle cell anemia. Ann Hematol. 2019;Dec98(12):2673–2681. doi: 10.1007/s00277-019-03783-y.
  • Bernaudin F, Verlhac S, Arnaud C, et al. Chronic and acute anemia and extracranial internal carotid stenosis are risk factors for silent cerebral infarcts in sickle cell anemia. Blood. 2015;Mar 5125(10):1653–1661. doi: 10.1182/blood-2014-09-599852.
  • Joly P, Garnier N, Kebaili K, et al. G6PD deficiency and absence of α-thalassemia increase the risk for cerebral vasculopathy in children with sickle cell anemia. Eur J Haematol. 2016;Apr96(4):404–408. doi: 10.1111/ejh.12607.
  • Belisário AR, Rodrigues Sales R, Evelin Toledo N, et al. Glucose-6-phosphate dehydrogenase deficiency in Brazilian children with sickle cell anemia is not associated with clinical ischemic stroke or high-risk transcranial Doppler. Pediatr Blood Cancer. 2016;Jun63(6):1046–1049. doi: 10.1002/pbc.25924.
  • Hellani A, Al-Akoum S, Abu-Amero KK. G6PD mediterranean S188F codon mutation is common among saudi sickle cell patients and increases the risk of stroke. Genet Test Mol Biomarkers. 2009;Aug13(4):449–452. doi: 10.1089/gtmb.2009.0011.
  • Domingos IF, Falcão DA, Hatzlhofer BL, et al. Influence of the βs haplotype and α-thalassemia on stroke development in a Brazilian population with sickle cell anaemia. Ann Hematol. 2014;Jul93(7):1123–1129. doi: 10.1007/s00277-014-2016-1.
  • Flanagan JM, Frohlich DM, Howard TA, et al. Genetic predictors for stroke in children with sickle cell anemia. Blood. 2011;Jun 16117(24):6681–6684. doi: 10.1182/blood-2011-01-332205.
  • Silva M, Vargas S, Coelho A, et al. Biomarkers and genetic modulators of cerebral vasculopathy in sub-Saharan ancestry children with sickle cell anemia. Blood Cells Mol Dis. 2020;Jul83:102436. doi: 10.1016/j.bcmd.2020.102436.
  • Belisário AR, Nogueira FL, Rodrigues RS, et al. Association of alpha-thalassemia, TNF-alpha (-308G > A) and VCAM-1 (c.1238G > C) gene polymorphisms with cerebrovascular disease in a newborn cohort of 411 children with sickle cell anemia. Blood Cells Mol Dis. 2015;Jan54(1):44–50. doi: 10.1016/j.bcmd.2014.08.001.
  • Franco RS, Yasin Z, Palascak MB, et al. The effect of fetal hemoglobin on the survival characteristics of sickle cells. Blood. 2006;Aug 1108(3):1073–1076. doi: 10.1182/blood-2005-09-008318.
  • Adekile A. The genetic and clinical significance of fetal hemoglobin expression in sickle Cell Disease. Med Princ Pract. 2021;30(3):201–211. doi: 10.1159/000511342.
  • Sidani CA, Ballourah W, El Dassouki M, et al. Venous sinus thrombosis leading to stroke in a patient with sickle cell disease on hydroxyurea and high hemoglobin levels: treatment with thrombolysis. Am J Hematol. 2008;Oct83(10):818–820. doi: 10.1002/ajh.21261.
  • Heit JA, Armasu SM, McCauley BM, et al. Identification of unique venous thromboembolism-susceptibility variants in African-Americans. Thromb Haemost. 2017;Apr 3117(4):758–768. doi: 10.1160/TH16-08-0652.
  • Hoppe C, Klitz W, D'Harlingue K, et al. Confirmation of an association between the TNF(−308) promoter polymorphism and stroke risk in children with sickle cell anemia. Stroke. 2007;Aug38(8):2241–2246. doi: 10.1161/STROKEAHA.107.483115.
  • Flanagan JM, Sheehan V, Linder H, et al. Genetic mapping and exome sequencing identify 2 mutations associated with stroke protection in pediatric patients with sickle cell anemia. Blood. 2013;Apr 18121(16):3237–3245. doi: 10.1182/blood-2012-10-464156.
  • Hoppe C, Cheng S, Grow M, et al. A novel multilocus genotyping assay to identify genetic predictors of stroke in sickle cell anaemia: short Report. Br J Haematol. 2001;Sep114(3):718–720. doi: 10.1046/j.1365-2141.2001.02997.x.
  • Belisário AR, Sales RR, Toledo NE, et al. Association between ENPP1 K173Q and stroke in a newborn cohort of 395 Brazilian children with sickle cell anemia. Blood. 2015;Sep 3126(10):1259–1260. doi: 10.1182/blood-2015-05-645176.
  • Belisário AR, Sales RR, Toledo NE, et al. Reticulocyte count is the most important predictor of acute cerebral ischemia and high-risk transcranial Doppler in a newborn cohort of 395 children with sickle cell anemia. Ann Hematol. 2016;Oct95(11):1869–1880. doi: 10.1007/s00277-016-2789-5.
  • Cumming AM, Olujohungbe A, Keeney S, et al. The methylenetetrahydrofolate reductase gene C677T polymorphism in patients with homozygous sickle cell disease and stroke. Br J Haematol. 1999;Dec107(3):569–571. doi: 10.1046/j.1365-2141.1999.01728.x.
  • Moreira Neto F, Lourenço DM, Noguti MAE, et al. The clinical impact of MTHFR polymorphism on the vascular complications of sickle cell disease. Braz J Med Biol Res. 2006;39(10):1291–1295. doi: 10.1590/S0100-879X2006005000008.
  • Hatzlhofer BLD, Pereira-Martins DA, de Farias Domingos I, et al. Alpha thalassemia, but not βS-globin haplotypes, influence sickle cell anemia clinical outcome in a large, single-center Brazilian cohort. Ann Hematol. 2021;Apr100(4):921–931. doi: 10.1007/s00277-021-04450-x.
  • Zimmerman SA, Howard TA, Whorton MR, et al. Thrombophilic DNA mutations as independent risk factors for stroke and avascular necrosis in sickle cell anemia. Hematology. 2001;6(5):347–353. doi: 10.1080/10245332.2001.11746590.
  • Taylor JG, Tang DC, Savage SA, et al. Variants in the VCAM1 gene and risk for symptomatic stroke in sickle cell disease. Blood. 2002;Dec 15100(13):4303–4309. doi: 10.1182/blood-2001-12-0306.
  • Batista JVGF, Pereira-Martins DA, Falcão DA, et al. Association of KLOTHO polymorphisms with clinical complications of sickle cell anemia. Ann Hematol. 2021;Aug100(8):1921–1927. doi: 10.1007/s00277-021-04532-w.
  • Domingos IF, Pereira-Martins DA, Borges-Medeiros RL, et al. Evaluation of oxidative stress-related genetic variants for predicting stroke in patients with sickle cell anemia. J Neurol Sci. 2020;Jul 15414:116839. doi: 10.1016/j.jns.2020.116839.
  • Hassan FM, Al-Zahrani FM. BCL11A rs1427407 genotypes in sickle cell anemia patients undergo to stroke problems in Sudan. Korean J Fam Med. 2019;Jan40(1):53–57. doi: 10.4082/kjfm.17.0144.
  • Bhatnagar P, Barron-Casella E, Bean CJ, et al. Genome-wide meta-analysis of systolic blood pressure in children with sickle cell disease. PLoS One. 2013;8(9):e74193. doi: 10.1371/journal.pone.0074193.
  • Brewin JN, Rooks H, Gardner K, et al. Genome wide association study of silent cerebral infarction in sickle cell disease (HbSS and HbSC). Haematologica. 2021;Jun 1106(6):1770–1773. doi: 10.3324/haematol.2020.265827.
  • Alsultan A, Alabdulaali MK, Griffin PJ, et al. Sickle cell disease in Saudi Arabia: the phenotype in adults with the Arab-Indian haplotype is not benign. Br J Haematol. 2014;Feb164(4):597–604. doi: 10.1111/bjh.12650.
  • Raffield LM, Zakai NA, Duan Q, et al. D-dimer in African Americans: whole genome sequence analysis and relationship to cardiovascular disease risk in the Jackson heart study. Arterioscler Thromb Vasc Biol. 2017;Nov37(11):2220–2227. doi: 10.1161/ATVBAHA.117.310073.
  • Coupland AP, Thapar A, Qureshi MI, et al. The definition of stroke. J R Soc Med. 2017;Jan110(1):9–12. doi: 10.1177/0141076816680121.
  • Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;Sep 126(17):2190–2191. doi: 10.1093/bioinformatics/btq340.
  • Assessing the quality of published genetic association studies in meta-analyses: the quality of genetic studies (Q-Genie) tool | BMC Genomic Data | Full Text [Internet]. 2023; [cited May 10]. Available from: https://bmcgenomdata.biomedcentral.com/articles/10<?sch-permit JATS-0034-007?>.1186/s12863-015-0211-2
  • Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;Oct 12355:i4919. doi: 10.1136/bmj.i4919.
  • Ryan-Moore E, Mavrommatis Y, Waldron M. Systematic review and meta-analysis of candidate gene association studies with fracture risk in physically active participants. Front Genet. 2020;Jun 1611:551. doi: 10.3389/fgene.2020.00551.
  • Wonkam A, Chimusa ER, Mnika K, et al. Genetic modifiers of long-term survival in sickle cell anemia. Clin Transl Med. 2020;Aug10(4):e152.
  • Raffield LM, Ulirsch JC, Naik RP, et al. Common α-globin variants modify hematologic and other clinical phenotypes in sickle cell trait and disease. PLoS Genet. 2018;Mar14(3):e1007293. doi: 10.1371/journal.pgen.1007293.
  • Sebastiani P, Ramoni MF, Nolan V, et al. Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nat Genet. 2005;Apr37(4):435–440. doi: 10.1038/ng1533.
  • Hatzlhofer BLD, Bezerra MAC, Santos MNN, et al. MTHFR polymorphic variant C677T is associated to vascular complications in sickle-cell disease. Genet Test Mol Biomarkers. 2012;Sep 116(9):1038–1043. doi: 10.1089/gtmb.2011.0361.
  • Tang DC, Prauner R, Liu W, et al. Polymorphisms within the angiotensinogen gene (GT-repeat) and the risk of stroke in pediatric patients with sickle cell disease: a case-control study. Am J Hematol. 2001;Nov68(3):164–169. doi: 10.1002/ajh.1173.
  • Taylor JG, Tang D, Foster CB, et al. Patterns of low-affinity immunoglobulin receptor polymorphisms in stroke and homozygous sickle cell disease. Am J Hematol. 2002;Feb69(2):109–114. doi: 10.1002/ajh.10048.
  • Adams RJ, Akinyemi RO, Owolabi MO, et al. New approaches to genetic predisposition for hemorrhagic stroke in sickle cell disease. J Clin Hypertens (Greenwich)). 2018;Jun20(6):1078–1079. doi: 10.1111/jch.13306.
  • de Oliveira Filho RA, Silva GJ, de Farias Domingos I, et al. Association between the genetic polymorphisms of glutathione S-transferase (GSTM1 and GSTT1) and the clinical manifestations in sickle cell anemia. Blood Cells Mol Dis. 2013;Aug 151(2):76–79. doi: 10.1016/j.bcmd.2013.03.003.
  • Leonardo FC, Brugnerotto AF, Domingos IF, et al. Reduced rate of sickle-related complications in Brazilian patients carrying HbF-promoting alleles at the BCL11A and HMIP-2 loci. Br J Haematol. 2016;May173(3):456–460. doi: 10.1111/bjh.13961.
  • Acute clinical events in 299 homozygous sickle cell patients living in France. French Study Group on Sickle Cell Disease - PubMed [Internet]. [cited 2024 Feb 17]. Available from: https://pubmed.ncbi.nlm.nih.gov/11007050/.
  • Saraf SL, Akingbola TS, Shah BN, et al. Associations of α-thalassemia and BCL11A with stroke in Nigerian, United States, and United Kingdom sickle cell anemia cohorts. Blood Adv. 2017;Apr 251(11):693–698. doi: 10.1182/bloodadvances.2017005231.
  • Tozatto-Maio K, Girot R, Ly ID, et al. Polymorphisms in inflammatory genes modulate clinical complications in patients with sickle cell disease. Front Immunol. 2020;11:2041. doi: 10.3389/fimmu.2020.02041.
  • Domingos IF, Pereira-Martins DA, Coelho-Silva JL, et al. Interleukin-6 G-174C polymorphism predicts higher risk of stroke in sickle cell anaemia. Br J Haematol. 2018;Jul182(2):294–297. doi: 10.1111/bjh.14773.
  • Hoppe C, Klitz W, Noble J, et al. Distinct HLA associations by stroke subtype in children with sickle cell anemia. Blood. 2003;Apr 1101(7):2865–2869. doi: 10.1182/blood-2002-09-2791.
  • Hoppe C, Klitz W, Cheng S, et al. Gene interactions and stroke risk in children with sickle cell anemia. Blood. 2004;Mar 15103(6):2391–2396. doi: 10.1182/blood-2003-09-3015.
  • Styles LA, Hoppe C, Klitz W, et al. Evidence for HLA-related susceptibility for stroke in children with sickle cell disease. Blood. 2000;Jun 195(11):3562–3567. doi: 10.1182/blood.V95.11.3562.
  • Alsultan A, Al-Suliman AM, Aleem A, et al. Utilizing whole-exome sequencing to characterize the phenotypic variability of sickle cell disease. Genet Test Mol Biomarkers. 2018;Sep22(9):561–567. doi: 10.1089/gtmb.2018.0058.
  • Barbosa LC, Miranda-Vilela AL, Hiragi C. d O, et al. Haptoglobin and myeloperoxidase (- G463A) gene polymorphisms in Brazilian sickle cell patients with and without secondary iron overload. Blood Cells Mol Dis. 2014;Mar52(2-3):95–107. doi: 10.1016/j.bcmd.2013.10.001.
  • Rodrigues DOW, Ribeiro LC, Sudário LC, et al. Genetic determinants and stroke in children with sickle cell disease. J Pediatr (Rio J)). 2016;Dec92(6):602–608. doi: 10.1016/j.jped.2016.01.010.
  • Carter TE, Mekonnen SK, Lopez K, et al. Glucose-6-phosphate dehydrogenase deficiency genetic variants in malaria patients in Southwestern Ethiopia. Am J Trop Med Hyg. 2018;Jan 1098(1):83–87. doi: 10.4269/ajtmh.17-0557.
  • Santos B, Delgadinho M, Ferreira J, et al. Co-Inheritance of alpha-thalassemia and sickle cell disease in a cohort of Angolan pediatric patients. Mol Biol Rep. 2020;Jul47(7):5397–5402. doi: 10.1007/s11033-020-05628-8.
  • Ali Al-Barazanchi ZA, Abdulateef SS, Hassan MK. Co-inheritance of α-thalassemia gene mutation in patients with sickle cell disease: impact on clinical and hematological variables. Niger J Clin Pract. 2021;Jun24(6):874–882. doi: 10.4103/njcp.njcp_11_20.
  • Rhainds D, Packard CJ, Brodeur MR, et al. Role of adenylate cyclase 9 in the pharmacogenomic response to dalcetrapib: clinical paradigm and molecular mechanisms in precision cardiovascular medicine. Circ Genom Precis Med. 2021;Apr14(2):e003219.
  • The annexin A2 system and angiogenesis - PubMed [Internet]. [cited 2023. Aug 2]. Available from: https://pubmed.ncbi.nlm.nih.gov/27366903/.
  • TEK TEK receptor tyrosine kinase - NIH Genetic Testing Registry (GTR) - NCBI. [Internet]. [cited 2023. Aug 2]. Available from: https://www.ncbi.nlm.nih.gov/gtr/genes/7010/.
  • Steinberg MH, Sebastiani P. Genetic modifiers of sickle cell disease. Am J Hematol. 2012;Aug87(8):795–803. doi: 10.1002/ajh.23232.
  • Chang AK, Ginter Summarell CC, Birdie PT, et al. Genetic modifiers of severity in sickle cell disease. Clin Hemorheol Microcirc. 2018;68(2-3):147–164. doi: 10.3233/CH-189004.
  • ElAlfy MS, Ebeid FSE, Kamal TM, et al. Angiotensinogen M235T gene polymorphism is a genetic determinant of cerebrovascular and cardiopulmonary morbidity in adolescents with sickle cell disease. J Stroke Cerebrovasc Dis. 2019;Feb28(2):441–449. doi: 10.1016/j.jstrokecerebrovasdis.2018.10.019.
  • Genetics against race: Science, politics and affirmative action in Brazil - PubMed [Internet]. [cited 2023. Aug 10]. Available from: https://pubmed.ncbi.nlm.nih.gov/27479998/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.