213
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Facile development, characterization, and evaluation of novel bicalutamide loaded pH-sensitive mesoporous silica nanoparticles for enhanced prostate cancer therapy

ORCID Icon &
Pages 532-547 | Received 26 Jul 2018, Accepted 11 Dec 2018, Published online: 30 Jan 2019

References

  • Zhang F, Li M, Wang J, et al. Finding new tricks for old drugs: tumoricidal activity of non-traditional antitumor drugs. AAPS PharmSciTech. 2016;17:539–552.
  • Jain AS, Dhawan VV, Sarmento B, et al. In vitro and ex vivo evaluations of lipid anti-cancer nanoformulations: insights and assessment of bioavailability enhancement. AAPS PharmSciTech. 2016;17:553–571.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. Cancer J Clin. 2016;66:7–30.
  • Wen J, Yang K, Liu F, et al. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev. 2017;46:6024–6045.
  • Saroj S, Rajput SJ. Composite smart mesoporous silica nanoparticles as promising theranostic candidates: recent trends and applications. J Drug Deliv Sci Technol. 2018.
  • Tao W, Zhu X, Yu X, et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv Mater. 2017;29:1603276.
  • Cheng W, Nie J, Gao N, et al. A multifunctional nanoplatform against multidrug resistant cancer: merging the best of targeted chemo/gene/photothermal therapy. Adv Funct Mater. 2017;27:1704135.
  • Cheng W, Liang C, Wang X, et al. A drug-self-gated and tumor microenvironment-responsive mesoporous silica vehicle: “four-in-one” versatile nanomedicine for targeted multidrug-resistant cancer therapy. Nanoscale. 2017;9:17063–17073.
  • Chang J-S, Chang KLB, Hwang D-F, et al. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol. 2007;41:2064–2068.
  • Roggers R, Kanvinde S, Boonsith S, et al. The practicality of mesoporous silica nanoparticles as drug delivery devices and progress toward this goal. Aaps Pharmscitech. 2014;15:1163–1171.
  • Lin Y-S, Haynes CL. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc. 2010;132:4834–4842.
  • Singh N, Karambelkar A, Gu L, et al. Bioresponsive mesoporous silica nanoparticles for triggered drug release. J Am Chem Soc. 2011;133:19582–19585.
  • Engin K, Leeper D, Cater J, et al. Extracellular pH distribution in human tumours. Int J Hyperthermia. 1995;11:211–216.
  • Lee ES, Oh KT, Kim D, et al. Tumor pH-responsive flower-like micelles of poly (L-lactic acid)-b-poly (ethylene glycol)-b-poly (L-histidine). J Control Rel. 2007;123:19–26.
  • Peng H, Dong R, Wang S, et al. A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly (acrylic acid) shell-layers: fabrication, characterization and properties for controlled release of salidroside. Int J Pharm. 2013;446:153–159.
  • Zeng X, Liu G, Tao W, et al. A drug‐self‐gated mesoporous antitumor nanoplatform based on pH‐sensitive dynamic covalent bond. Adv Funct Mater. 2017;27:1605985.
  • Cheng W, Nie J, Xu L, et al. pH-Sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl Mater Interfaces. 2017;9:18462–18473.
  • Liang C, Wang H, Zhang M, et al. Self-controlled release of Oxaliplatin prodrug from d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) functionalized mesoporous silica nanoparticles for cancer therapy. J Colloid Interface Sci. 2018;525:1–10.
  • Ding X, Liu Y, Li J, et al. Hydrazone-bearing PMMA-functionalized magnetic nanocubes as pH-responsive drug carriers for remotely targeted cancer therapy in vitro and in vivo. ACS Appl Mater Interfaces. 2014;6:7395–7407.
  • Shah PV, Rajput SJ. Facile synthesis of chitosan capped mesoporous silica nanoparticles: a pH responsive smart delivery platform for raloxifene hydrochloride. AAPS PharmSciTech. 2018;19:1344–1357.
  • Xiao X, Liu Y, Guo M, et al. pH-triggered sustained release of arsenic trioxide by polyacrylic acid capped mesoporous silica nanoparticles for solid tumor treatment in vitro and in vivo. J Biomater Appl. 2016;31:23–35.
  • Cheng W, Liang C, Xu L, et al. TPGS‐functionalized polydopamine‐modified mesoporous silica as drug nanocarriers for enhanced lung cancer chemotherapy against multidrug resistance. Small. 2017;13:1700623.
  • Yuan L, Tang Q, Yang D, et al. Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery. J Phys Chem C. 2011;115:9926–9932.
  • Li H, Yu H, Zhu C, et al. Cisplatin and doxorubicin dual-loaded mesoporous silica nanoparticles for controlled drug delivery. RSC Adv. 2016;6:94160–94169.
  • Saroj S, Rajput SJ. Tailor-made pH-sensitive polyacrylic acid functionalized mesoporous silica nanoparticles for efficient and controlled delivery of anti-cancer drug Etoposide. Drug Dev Ind Pharm. 2018;44:1198–1211.
  • Yang JM, Huang MJ, Yeh TS. Preparation of poly (acrylic acid) modified polyurethane membrane for biomaterial by UV radiation without degassing. J Biomed Mater Res. 1999;45:133–139.
  • Tripathi SK, Ahmadi Z, Gupta KC, et al. Polyethylenimine-polyacrylic acid nanocomposites: type of bonding does influence the gene transfer efficacy and cytotoxicity. Colloids Surfaces B. 2016;140:117–120.
  • Scher HI, Liebertz C, Kelly WK, et al. Bicalutamide for advanced prostate cancer: the natural versus treated history of disease. Jco. 1997;15:2928–2938.
  • Tyrrell C, Kaisary A, Iversen P, et al. A randomised comparison of ‘Casodex’TM (bicalutamide) 150 mg monotherapy versus castration in the treatment of metastatic and locally advanced prostate cancer. Eur Urol. 1998;33:447–456.
  • Shah PV, Rajput SJ. A comparative in vitro release study of raloxifene encapsulated ordered MCM-41 and MCM-48 nanoparticles: a dissolution kinetics study in simulated and biorelevant media. J Drug Deliv Sci Technol. 2017;41:31–44.
  • Saroj S, Rajput SJ. Etoposide encapsulated functionalized mesoporous silica nanoparticles: synthesis, characterization and effect of functionalization on dissolution kinetics in simulated and biorelevant media. J Drug Deliv Sci Technol. 2018;44:27–40.
  • Shah P, Rajput SJ. Amine decorated 2d hexagonal and 3d cubic mesoporous silica nanoparticles: a comprehensive dissolution kinetic study in simulated and biorelevant media. J Dispers Sci Technol. [cited 2018 Jul 11];[19 p.]. DOI:10.1080/01932691.2018.1464467
  • Kettiger H, Québatte G, Perrone B, et al. Interactions between silica nanoparticles and phospholipid membranes. Biochim Biophys Acta Biomembr. 2016;1858:2163–2170.
  • Wouters BH, Chen T, Dewilde M, et al. Reactivity of the surface hydroxyl groups of MCM-41 towards silylation with trimethylchlorosilane. Microporous Mesoporous Mater. 2001;44:453–457.
  • Yoncheva K, Popova M, Szegedi A, et al. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide. J Solid State Chem. 2014;211:154–161.
  • Knežević NŽ, Durand JO. Targeted treatment of cancer with nanotherapeutics based on mesoporous silica nanoparticles. Chem Plus Chem 2015;80:26–36.
  • Sing KS. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem. 1985;57:603–619.
  • Sun J-T, Hong C-Y, Pan C-Y. Fabrication of PDEAEMA-coated mesoporous silica nanoparticles and pH-responsive controlled release. J Phys Chem C. 2010;114:12481–12486.
  • Rades S, Hodoroaba V-D, Salge T, et al. High-resolution imaging with SEM/T-SEM, EDX and SAM as a combined methodical approach for morphological and elemental analyses of single engineered nanoparticles. RSC Advances. 2014;4:49577–49587.
  • Jin S, Liu M, Chen S, et al. A drug-loaded gel based on polyelectrolyte complexes of poly (acrylic acid) with poly (vinylpyrrolidone) and chitosan. Mater Chem Phys. 2010;123:463–470.
  • Daryasari MP, Akhgar MR, Mamashli F, et al. Chitosan-folate coated mesoporous silica nanoparticles as a smart and pH-sensitive system for curcumin delivery. Rsc Adv. 2016;6:105578–105588.
  • Li J, Zheng L, Cai H, et al. Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials. 2013;34:8382–8392.
  • Jadhav NV, Vavia PR. Dodecylamine template-based hexagonal mesoporous silica (HMS) as a carrier for improved oral delivery of fenofibrate. AAPS Pharm Sci Tech. 2017;18:2764–2773.
  • Wanyika H, Gatebe E, Kioni P, et al. Synthesis and characterization of ordered mesoporous silica nanoparticles with tunable physical properties by varying molar composition of reagents. Afr J Pharm Pharmacol. 2011;5:2402–2410.
  • Andrade GF, Soares DCF, de Sousa Almeida RK, et al. Mesoporous silica SBA-16 functionalized with alkoxysilane groups: preparation, characterization, and release profile study. J Nanomater. 2012;2012:1.
  • Vazquez NI, Gonzalez Z, Ferrari B, et al. Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications. Boletín de la Sociedad Española de Cerámica y Vidrio. 2017;56:139–145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.