273
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Investigation of in vitro permeability and in vivo pharmacokinetic behavior of bare and functionalized MCM-41 and MCM-48 mesoporous silica nanoparticles: a burst and controlled drug release system for raloxifene

&
Pages 587-602 | Received 06 Apr 2018, Accepted 07 Jan 2019, Published online: 04 Feb 2019

References

  • Jain AS, Dhawan VV, Sarmento B, et al. In vitro and ex vivo evaluations of lipid anti-cancer nanoformulations: insights and assessment of bioavailability enhancement. AAPS PharmSciTech. 2016;17:553–571.
  • Koh P, Chuah J, Talekar M, et al. Formulation development and dissolution rate enhancement of efavirenz by solid dispersion systems. Indian J Pharm Sci. 2013;75:291.
  • Shah PV, Rajput SJ. A comparative in vitro release study of raloxifene encapsulated ordered MCM-41 and MCM-48 nanoparticles: a dissolution kinetics study in simulated and biorelevant media. J Drug Deliv Sci Technol. 2017;41:31–44.
  • Saroj S, Rajput SJ. Composite smart mesoporous silica nanoparticles as promising theranostic candidates: recent trends and applications. J Drug Deliv Sci Technol. 2018.
  • Biswas N. Modified mesoporous silica nanoparticles for enhancing oral bioavailability and antihypertensive activity of poorly water soluble valsartan. Eur J Pharm Sci. 2017;99:152–160.
  • Hartono SB, Hadisoewignyo L, Yang Y, et al. Amine functionalized cubic mesoporous silica nanoparticles as an oral delivery system for curcumin bioavailability enhancement. Nanotechnology. 2016;27:505605.
  • Zhang Y, Wang J, Bai X, et al. Mesoporous silica nanoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. Mol Pharmaceutics. 2012;9:505–513.
  • Jordan V. Beyond raloxifene for the prevention of osteoporosis and breast cancer. Br J Pharmacol. 2007;150:3–4.
  • Ettinger B, Black DM, Mitlak BH, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA. 1999;282:637–645.
  • Shah N, Seth A, Balaraman R, et al. Oral bioavailability enhancement of raloxifene by developing microemulsion using D-optimal mixture design: Optimization and in-vivo pharmacokinetic study. Drug Dev Ind Pharm. 2017;1–10.
  • Patil PH, Belgamwar VS, Patil PR, et al. Solubility enhancement of raloxifene using inclusion complexes and cogrinding method. J Pharm. 2013;2013:1.
  • Shah NV, Seth AK, Balaraman R, et al. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: design and in vivo study. J Adv Res. 2016;7:423–434.
  • Tran TH, Ramasamy T, Cho HJ, et al. Formulation and optimization of raloxifene-loaded solid lipid nanoparticles to enhance oral bioavailability. J Nanosci Nanotech. 2014;14:4820–4831.
  • Patel BD, Modi RV, Thakkar NA, et al. Development and characterization of solid lipid nanoparticles for enhancement of oral bioavailability of Raloxifene. J Pharm Bioall Sci. 2012;4:S14.
  • Kushwaha AK, Vuddanda PR, Karunanidhi P, et al. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. BioMed Res Int. 2013;2013:1.
  • Wouters BH, Chen T, Dewilde M, et al. Reactivity of the surface hydroxyl groups of MCM-41 towards silylation with trimethylchlorosilane. Microporous Mesoporous Mater. 2001;44:453–457.
  • Ebrahimi-Gatkash M, Younesi H, Shahbazi A, et al. Amino-functionalized mesoporous MCM-41 silica as an efficient adsorbent for water treatment: batch and fixed-bed column adsorption of the nitrate anion. Appl Water Sci. 2015;1–15.
  • Yoncheva K, Popova M, Szegedi A, et al. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide. J Solid State Chem. 2014;211:154–161.
  • Schumacher K, Grün M, Unger K. Novel synthesis of spherical MCM-48. Microporous Mesoporous Mater. 1999;27:201–206.
  • Rosen JE, Gu FX. Surface functionalization of silica nanoparticles with cysteine: a low-fouling zwitterionic surface. Langmuir. 2011;27:10507–10513.
  • Ding Y, Shen SZ, Sun H, et al. Design and construction of polymerized-chitosan coated Fe 3 O 4 magnetic nanoparticles and its application for hydrophobic drug delivery. Mater Sci Eng C Mater Biol Appl. 2015;48:487–498.
  • de Oliveira LFa, Bouchmella K, Gonçalves KA, et al. Functionalized silica nanoparticles as an alternative platform for targeted drug-delivery of water insoluble drugs. Langmuir. 2016;32:3217–3225.
  • Saroj S, Rajput SJ. Etoposide encapsulated functionalized mesoporous silica nanoparticles: Synthesis, characterization and effect of functionalization on dissolution kinetics in simulated and biorelevant media. J Drug Deliv Sci Technol. 2017.
  • Shah PV, Rajput SJ. Facile synthesis of chitosan capped mesoporous silica nanoparticles: a pH responsive smart delivery platform for raloxifene hydrochloride. AAPS PharmSciTech. 2018;1–14.
  • Lu H-T. Synthesis and characterization of amino-functionalized silica nanoparticles. Colloid J. 2013;75:311–318.
  • Deng L, Wang Y, Gong T, et al. Dissolution and bioavailability enhancement of alpha-asarone by solid dispersions via oral administration. Drug Dev Ind Pharm. 2017;43:1817–1826.
  • Saini D, Fazil M, Ali MM, et al. Formulation, development and optimization of raloxifene-loaded chitosan nanoparticles for treatment of osteoporosis. Drug Deliv. 2015;22:823–836.
  • Braun K, Pochert A, Beck M, et al. Dissolution kinetics of mesoporous silica nanoparticles in different simulated body fluids. J Sol-Gel Sci Technol. 2016;79:319–327.
  • Ebrahimi-Gatkash M, Younesi H, Shahbazi A, et al. Amino-functionalized mesoporous MCM-41 silica as an efficient adsorbent for water treatment: batch and fixed-bed column adsorption of the nitrate anion. Appl Water Sci. 2017;7:1887–1901.
  • Jagadish B, Yelchuri R, Tangi H, et al. Enhanced dissolution and bioavailability of raloxifene hydrochloride by co-grinding with different superdisintegrants. Chem Pharm Bull. 2010;58:293–300.
  • Eimer GA, Pierella LB, Monti GA, et al. Synthesis and characterization of Al-MCM-41 and Al-MCM-48 mesoporous materials. Catal Letters. 2002;78:65–75.
  • Kachbouri S, Mnasri N, Elaloui E, et al. Tuning particle morphology of mesoporous silica nanoparticles for adsorption of dyes from aqueous solution. J Saudi Chem Soc. 2018;22:405–415.
  • Abd-Elrahman AA, El Nabarawi MA, Hassan DH, et al. Ketoprofen mesoporous silica nanoparticles SBA-15 hard gelatin capsules: preparation and in vitro/in vivo characterization. Drug Deliv. 2016;23:3387–3398.
  • Ağardan NBM, Değim Z, Yılmaz Ş, et al. The effectiveness of raloxifene-loaded liposomes and cochleates in breast cancer therapy. AAPS PharmSciTech. 2016;17:968–977.
  • Popova M, Szegedi A, Mavrodinova V, et al. Preparation of resveratrol-loaded nanoporous silica materials with different structures. J Solid State Chem. 2014;219:37–42.
  • Juère E, Florek J, Bouchoucha M, et al. In vitro dissolution, cellular membrane permeability, and anti-inflammatory response of resveratrol-encapsulated mesoporous silica nanoparticles. Mol Pharmaceutics. 2017;14:4431–4441.
  • Ochiuz L, Luca MC, Stoleriu I, et al. Assessment of the in vitro release of alendronate sodium from mesoporous silica particles. Farmacia. 2016;64:131–134.
  • Shah P, Rajput SJ. Amine decorated 2d hexagonal and 3d cubic mesoporous silica nanoparticles: A comprehensive dissolution kinetic study in simulated and biorelevant media. J Dispers Sci Technol. 2018;1–19.
  • Wang Y, Sun L, Jiang T, et al. The investigation of MCM-48-type and MCM-41-type mesoporous silica as oral solid dispersion carriers for water insoluble cilostazol. Drug Dev Ind Pharm. 2014;40:819–828.
  • Mahajan M, Rajput S. Development of mesoporous silica nanoparticles of ritonavir with enhanced bioavailability potential: formulation optimization, in-vitro and in-vivo evaluation. Int J Pharm Sci Res. 2018;9:4127–4137.
  • Izquierdo-Barba I, Sousa E, Doadrio JC, et al. Influence of mesoporous structure type on the controlled delivery of drugs: release of ibuprofen from MCM-48, SBA-15 and functionalized SBA-15. J Sol-Gel Sci Technol. 2009;50:421–429.
  • Ghedini E, Signoretto M, Pinna F, et al. Ibuprofen delivery behaviour on MCM-41: influence of organic groups amount. In: Studies in surface science and catalysis. Vol. 174. Elsevier; 2008. p. 429–432.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.