840
Views
58
CrossRef citations to date
0
Altmetric
Research Article

Development of novel pH-sensitive nanoparticles loaded hydrogel for transdermal drug delivery

, , , &
Pages 629-641 | Received 11 Jul 2018, Accepted 07 Jan 2019, Published online: 28 Jan 2019

References

  • Lee H, Song C, Baik S, et al. Device-assisted transdermal drug delivery. Adv Drug Deliv Rev. 2017;127:35–45.
  • Chen M, Gupta V, Anselmo AC, et al. Topical delivery of hyaluronic acid into skin using SPACE-peptide carriers. J Control Release. 2014;173:67–74.
  • Tanwar H, Sachdeva R. Transdermal drug delivery system: a review. Int J Pharm Sci Res. 2016;7:2274.
  • Rawat A, Bhatt GK, Kothiyal P. Review on transdermal drug delivery system. Indo Am J Pharm Sci. 2016;3:423–428.
  • Cevc G, Vierl U. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release. 2010;141:277–299.
  • Shim J, Kang HS, Park W-S, et al. Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J Control Release. 2004;97:477–484.
  • Stuart MAC, Huck WT, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials. Nature Mater. 2010;9:101.
  • Ahn S-k, Kasi RM, Kim S-C, et al. Stimuli-responsive polymer gels. Soft Matter. 2008;4:1151–1157.
  • Huh KM, Kang HC, Lee YJ, et al. pH-sensitive polymers for drug delivery. Macromol Res. 2012;20:224–233.
  • Kun NA, You HB. pH-sensitive polymers for drug delivery. Polymeric drug delivery systems. CRS Press, Tayler and Francis Group. 2005;148.3.
  • Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev. 2006;58:1655–1670.
  • Moustafine RI, Sitenkov AY, Bukhovets AV, et al. Indomethacin-containing interpolyelectrolyte complexes based on Eudragit® E PO/S 100 copolymers as a novel drug delivery system. Int J Pharm. 2017;524:121–133.
  • Shojaei A, Read S, Couch RA, et al. Controlled dose drug delivery system. Shire LLC, US application. Google Patents US20170246127A1 2017.
  • Sun H, Ma X, Guo Z, et al. Application of andrographolide in the preparation of a pharmaceutical for treatment of inflammatory bowel disease, andrographolide enteric targeting micropellet, and method for preparation thereof. Tasly Pharmaceutical Group Co Ltd, US application. Google Patents US20170224623A1. 2017.
  • Chen S, Guo F, Deng T, et al. Eudragit S100-coated chitosan nanoparticles co-loading tat for enhanced oral colon absorption of insulin. AAPS PharmSciTech. 2017;18:1277–1287.
  • Singh B, Saini G, Jhanwar B. Colon specific chronotherapeutic drug delivery for nocturnal asthma: effect of Eudragit enteric coating on matrix tablets of salbutamol sulphate. IJPTR. 2017;10:19–30.
  • Agrawal GR, Wakte P. Shelke S. Formulation, physicochemical characterization and in vitro evaluation of human insulin-loaded microspheres as potential oral carrier. Prog Biomater. 2017;6:125–136.
  • Huanbutta K, Luangtana-anan M, Sriamornsak P, et al. Factors affecting preparations of chitosan microcapsules for colonic drug delivery. JOM. 2017;18:79–83
  • Ahuja M, Dhake AS, Sharma SK, et al. Diclofenac-loaded Eudragit S100 nanosuspension for ophthalmic delivery. J Microencapsul. 2011;28:37–45.
  • Maulvi FA, Lakdawala DH, Shaikh AA, et al. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery. J Control Release. 2016;226:47–56.
  • Yoo J-W, Giri N, Lee CH. pH-sensitive Eudragit nanoparticles for mucosal drug delivery. Int J Pharm. 2011;403:262–267.
  • Sahle FF, Gerecke C, Kleuser B, et al. Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications. Int J Pharm. 2017;516:21–31.
  • Garala KC, Shinde AJ, Shah PH. Formulation and in-vitro characterization of monolithic matrix transdermal systems using HPMC/Eudragit S 100 polymer blends. Int J Pharm Pharm Sci. 2009;1:108–120.
  • Schmid-Wendtner M-H, Korting HC. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol. 2006;19:296–302.
  • Abdulkarim MF, Abdullah GZ, Chitneni M, et al. Topical piroxicam in vitro release and in vivo anti-inflammatory and analgesic effects from palm oil esters-based nanocream. Int J Nanomed. 2010;5:915.
  • Hadgraft J, Guy RH. Transdermal Drug Delivery. Newyork and Basel: Marcel Dekker; 2003.
  • Dhawan B, Aggarwal G, Harikumar S. Enhanced transdermal permeability of piroxicam through novel nanoemulgel formulation. Int J Pharma Investig. 2014;4:65.
  • Jia Z, Guoqiang J, Ying L, et al. Transdermal delivery of piroxicam by surfactant mediated electroporation. Tinshhua Sci Technol. 2005;10:542–547.
  • Park E-S, Cui Y, Yun B-J, et al. Transdermal delivery of piroxicam using microemulsions. Arch Pharm Res. 2005;28:243–248.
  • Ferreira H, Ribeiro A, Silva R, et al. Deformable liposomes for the transdermal delivery of piroxicam. J Pharm Drug Deliv Res. 2017;2015:341–346.
  • Varaprasad K, Raghavendra GM, Jayaramudu T, et al. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C. 2017;79:958–971.
  • Naik A, Pechtold LA, Potts RO, et al. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. J Control Release. 1995;37:299–306.
  • Gul R, Ahmed N, Ullah N, et al. Biodegradable ingredient-based emulgel loaded with ketoprofen nanoparticles. AAPS PharmSciTech. 2018;19:1869–1881.
  • Tarhini M, Benlyamani I, Hamdani S, et al. Protein-based nanoparticle preparation via nanoprecipitation method. Materials. 2018;11:394.
  • Abdel Messih HA, Ishak RA, Geneidi AS, et al. Nanoethosomes for transdermal delivery of tropisetron HCl: multi-factorial predictive modeling, characterization, and ex vivo skin permeation. Drug Dev Ind Pharm. 2017;43:958–971.
  • Khaira R, Sharma J, Saini V. Development and characterization of nanoparticles for the delivery of gemcitabine hydrochloride. ScientificWorldJournal. 2014;2014:1.
  • Ali H, Weigmann B, Neurath M, et al. Budesonide loaded nanoparticles with pH-sensitive coating for improved mucosal targeting in mouse models of inflammatory bowel diseases. J Control Release. 2014;183:167–177.
  • Fan L, Wu H, Zhang H, et al. Novel super pH-sensitive nanoparticles responsive to tumor extracellular pH. Carbohydr Polym. 2008;73:390–400.
  • Goyal A, Kamath R, Thakur G. A comparative study of the release of indomethacin from chitosan based cross-linked hydrogels. In belgian symposium on Tissue engineering, Belgium Manipal Academy of Higher Education; 2016.
  • Joshi M, Patravale V. Formulation and evaluation of nanostructured lipid carrier (NLC)-based gel of Valdecoxib. Drug Dev Ind Pharm. 2006;32:911–918.
  • Schwert GW, Eisenberg MA. The kinetics of the amidase and esterase activities of trypsin. J Biol Chem. 1949;179:665–672.
  • Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952;195:133–140.
  • Higuchi T. Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–1149.
  • Korsmeyer RW, Gurny R, Doelker E, et al. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.
  • Hixson A, Crowell J. Dependence of reaction velocity upon surface and agitation. Ind Eng Chem. 1931;23:1160–1168.
  • Khan IN, Khan MI, Mazumder K, et al. Characterization and ex-vivo skin permeation study of domperidone maleate transdermal patch. Bull Pharm Res 2012;2:15–21.
  • Das B, Sen SO, Maji R, et al. Transferosomal gel for transdermal delivery of risperidone: Formulation optimization and ex vivo permeation. J Drug Deliv Sci Technol. 2017;38:59–71.
  • ICH Guidelines. Stability testing of new drug substances and products. Q1A (R2). FDA, US Federal Register. 2003;68(225):65717–65718.
  • Roth PJ, Lowe AB. Stimulus-responsive polymers. Polym Chem. 2017;8:10–11.
  • Beloqui A, Coco R, Memvanga PB, et al. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int J Pharm. 2014;473:203–212.
  • Thakral NK, Ray AR, Majumdar DK. Eudragit S-100 entrapped chitosan microspheres of valdecoxib for colon cancer. J Mater Sci Mater Med. 2010;21:2691–2699.
  • Fernández-Colino A, Bermudez J, Arias F, et al. Development of a mechanism and an accurate and simple mathematical model for the description of drug release: application to a relevant example of acetazolamide-controlled release from a bio-inspired elastin-based hydrogel. Mater Sci Eng C. 2016;61:286–292.
  • Benson HA. Transdermal drug delivery: penetration enhancement techniques. CDD. 2005;2:23–33.
  • Chorny M, Fishbein I, Danenberg HD, et al. Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics. J Control Release. 2002;83:389–400.
  • Dong Y, Feng S-S. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs . Biomaterials. 2004;25:2843–2849.
  • Wang Y-C, Wu Y-T, Huang H-Y, et al. Surfactant-free formulation of poly (lactic/glycolic) acid nanoparticles encapsulating functional polypeptide: a technical note. AAPS PharmSciTech 2009;10:1263.
  • Feczkó T, Tóth J, Dósa G, et al. Influence of process conditions on the mean size of PLGA nanoparticles. Chem Eng Process. 2011;50:846–853.
  • Budhian A, Siegel SJ, Winey KI. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm. 2007;336:367–375.
  • Blouza IL, Charcosset C, Sfar S, et al. Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use. Int J Pharm. 2006;325:124–131.
  • Khayata N, Abdelwahed W, Chehna M, et al. Preparation of vitamin E loaded nanocapsules by the nanoprecipitation method: from laboratory scale to large scale using a membrane contactor. Int J Pharm. 2012;423:419–427.
  • Dong Y, Chang Y, Wang Q, et al. Effect of operating conditions on size and morphology of amylose nanoparticles prepared by precipitation. Starch‐Stärke. 2015;67:365–372.
  • Tefas LR, TOMUŢĂ I, Achim M, et al. Development and optimization of quercetin-loaded PLGA nanoparticles by experimental design. Clujul Med. 2015;88:214.
  • Mora-Huertas C, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385:113–142.
  • Asadi H, Rostamizadeh K, Salari D, et al. Preparation of biodegradable nanoparticles of tri-block PLA–PEG–PLA copolymer and determination of factors controlling the particle size using artificial neural network. J Microencapsul. 2011;28:406–416.
  • Iskandar F, Gradon L, Okuyama K. Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. J Colloid Interface Sci. 2003;265:296–303.
  • Zein EE, Donia AA, El-kayad S, et al.Microencapsulation of Piroxicam using pH-sensitivw polymers. Eur J Pharm Med Res. 2016;3(12):74–80
  • Adibkia K, Shadbad MRS, Nokhodchi A, et al. Piroxicam nanoparticles for ocular delivery: physicochemical characterization and implementation in endotoxin-induced uveitis. J Drug Target. 2007;15:407–416.
  • Esfandiarpour-Boroujeni S, Bagheri-Khoulenjani S, Mirzadeh H, et al. Fabrication and study of curcumin loaded nanoparticles based on folate-chitosan for breast cancer therapy application. Carbohydr Polym. 2017;168:14–21.
  • Chen H, Chang X, Du D, et al. Microemulsion-based hydrogel formulation of ibuprofen for topical delivery. Int J Pharm. 2006;315:52–58.
  • Hasan AS, Socha M, Lamprecht A, et al. Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int J Pharm. 2007;344:53–61.
  • Li J, Ni X, Leong KW. Injectable drug-delivery systems based on supramolecular hydrogels formed by poly(ethylene oxide)s and alpha-cyclodextrin. J Biomed Mater Res A. 2003;65:196–202.
  • Mirzaei B E, Ramazani SAA, Shafiee M, et al. Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int J Polym Mater Polym Biomater. 2013;62:605–611.
  • Gangurde AB, Amin PD. Microencapsulation by spray drying of vitamin A palmitate from oil to powder and its application in topical delivery system. JEAS. 2017;07:10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.