333
Views
35
CrossRef citations to date
0
Altmetric
Research Article

Inhalable chitosan microparticles for simultaneous delivery of isoniazid and rifabutin in lung tuberculosis treatment

, , , , ORCID Icon &
Pages 1313-1320 | Received 16 Jan 2019, Accepted 07 Apr 2019, Published online: 17 May 2019

References

  • World Health Organization Global Tuberculosis Report 2017. Geneva, Switzerland: World Health Organization; 2017.
  • Liang Z, Ni R, Zhou J, et al. Recent advances in controlled pulmonary drug delivery. Drug Discov Today. 2015;20:380–389.
  • East L, Isacke CM. The mannose receptor family. Biochim Biophys Acta. 2002;1572:364–386.
  • Cunha L, Rosa da Costa AM, Lourenço JP, et al. Spray-dried fucoidan microparticles for pulmonary delivery of antitubercular drugs. J Microencapsul. 2018;35:392–405.
  • Cunha L, Rodrigues S, Buttini F, et al. Inhalable fucoidan microparticles combining two antitubercular drugs with potential application in pulmonary tuberculosis therapy. Polymers (Basel). 2018;10:1–19.
  • Oliveira PM, Matos BN, Pereira PAT, et al. Microparticles prepared with 50–190 kDa chitosan as promising non-toxic carriers for pulmonary delivery of isoniazid. Carbohydr Polym. 2017;174:421–431.
  • Alves A, Cavaco J, Guerreiro F, et al. Inhalable antitubercular therapy mediated by locust bean gum microparticles. Molecules. 2016;21:1–22.
  • Martinelli F, Balducci AG, Kumar A, et al. Engineered sodium hyaluronate respirable dry powders for pulmonary drug delivery. Int J Pharm. 2017;517:286–295.
  • Buttini F, Colombo G, Kwok PCL, et al. Aerodynamic assessment for inhalation products: fundamentals and current pharmacopoeial methods. In: Colombo P, Traini D, Buttini F, editors. Inhalation drug delivery: techniques and products. West Sussex, United Kingdom: Wiley-Blackwell; 2013. p. 91–119.
  • Lund ME, To J, O'Brien BA, et al. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. J Immunol Methods. 2016;430:64–70.
  • Pai RV, Jain RR, Bannalikar AS, et al. Development and evaluation of chitosan microparticles based dry powder inhalation formulations of rifampicin and rifabutin. J Aerosol Med Pulm Drug Deliv. 2015;28:1–17.
  • Maury M, Murphy K, Kumar S, et al. Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer. Eur J Pharm Biopharm. 2005;59:565–573.
  • Anshakova AV, Yu Konyukhov V. Study by inverse gas chromatography of the solubility of rifabutin in water in the presence of cyclodextrin. Russ J Appl Chem. 2017;90:209–213.
  • Jabes D, Della Bruna C, Rossi R, et al. Effectiveness of rifabutin alone or in combination with isoniazid in preventive therapy of mouse tuberculosis. Antimicrob Agents Chemother. 1994;38:2346–2350.
  • Lacerda L, Parize AL, Fávere V, et al. Development and evaluation of pH-sensitive sodium alginate/chitosan microparticles containing the antituberculosis drug rifampicin. Mater Sci Eng C. 2014;39:161–167.
  • Pandey R, Khuller GK. Chemotherapeutic potential of alginate-chitosan microspheres as anti-tubercular drug carriers. J Antimicrob Chemother. 2004;53:635–640.
  • Corrigan DO, Healy AM, Corrigan OI. Preparation and release of salbutamol from chitosan and chitosan co-spray dried compacts and multiparticulates. Eur J Pharm Biopharm. 2006;62:295–305.
  • Buttini F, Brambilla G, Copelli D, et al. Effect of flow rate on in vitro aerodynamic performance of NEXThaler ® in comparison with Diskus ® and Turbohaler ® Dry Powder Inhalers. J Aerosol Med Pulm Drug Deliv. 2016;29:167–178.
  • Hirota K, Hasegawa T, Hinata H, et al. Optimum conditions for efficient phagocytosis of rifampicin-loaded PLGA microspheres by alveolar macrophages. J Control Release. 2007;119:69–76.
  • Eleftheriadis GK, Akrivou M, Bouropoulos N, et al. Polymer − lipid microparticles for pulmonary delivery. Langmuir. 2018;34:3438–3448.
  • Vieira AC, Magalhães J, Rocha S, et al. Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment. Nanomedicine. 2017;12:2721–2736.
  • Kundawala AJ, Patel VA, Patel HV, et al. Influence of formulation components on aerosolization properties of isoniazid loaded chitosan microspheres. Int J Pharm Sci Drug Res. 2011;3:297–302.
  • Upadhyay TK, Fatima N, Sharma D, et al. Preparation and characterization of beta-glucan particles containing a payload of nanoembedded rifabutin for enhanced targeted delivery to macrophages. Excli J. 2017;16:210–228.
  • Haghi M, Ong HX, Traini D, et al. Across the pulmonary epithelial barrier: integration of physicochemical properties and human cell models to study pulmonary drug formulations. Pharmacol Ther. 2014;144:235–252.
  • Bur M, Huwer H, Muys L, et al. Drug transport across pulmonary epithelial cell monolayers: effects of particle size, apical liquid volume, and deposition technique. J Aerosol Med Pulm Drug Deliv. 2010;23:119–127.
  • ISO 10993-5 Biological Evaluation of Medical Devices Part 5: tests for in vitro cytotoxicity. Geneva, Switzerland: International Organization for Standardization; 2009.
  • Barluenga J, Aznar F, García AB, et al. New rifabutin analogs: synthesis and biological activity against Mycobacterium tuberculosis. Bioorg Med Chem Lett. 2006;16:5717–5722.
  • Abbas Y, Azzazy HME, Tammam S, et al. Development of an inhalable, stimuli-responsive particulate system for delivery to deep lung tissue. Colloids Surf B Biointerfaces. 2016;146:19–30.
  • Boyles MSP, Kristl T, Andosch A, et al. Chitosan functionalisation of gold nanoparticles encourages particle uptake and induces cytotoxicity and pro-inflammatory conditions in phagocytic cells, as well as enhancing particle interactions with serum components. J Nanobiotechnol. 2015;13:1–20.
  • Fröhlich E, Mercuri A, Wu S, et al. Measurements of deposition, lung surface area and lung fluid for simulation of inhaled compounds. Front Pharmacol. 2016;7:1–10.
  • Caetano LA, Almeida AJ, Gonçalves LMD. Effect of experimental parameters on alginate/chitosan microparticles for BCG encapsulation. Mar Drugs. 2016;14:1–30.
  • Fu YN, Li Y, Li G, et al. Adaptive chitosan hollow microspheres as efficient drug carrier. Biomacromolecules. 2017;18:2195–2204.
  • Fotakis G, Timbrell JA. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett. 2006;160:171–177.
  • Wang C, Muttil P, Lu D, et al. Screening for potential adjuvants administered by the pulmonary route for tuberculosis vaccines. AAPS J. 2009;11:139–147.
  • Braz L, Grenha A, Ferreira D, et al. Chitosan/sulfated locust bean gum nanoparticles: in vitro and in vivo evaluation towards an application in oral immunization. Int J Biol Macromol. 2017;96:786–797.
  • Geiser M. Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulm Drug Deliv. 2010;23:207–217.
  • Fujihara M, Muroi M, Tanamoto K-i, et al. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther. 2003;100:171–194.
  • Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol. 2001;19:93–129.
  • Brodaczewska K, Wolaniuk N, Lewandowska K, et al. Biodegradable chitosan decreases the immune response to Trichinella spiralis in mice. Molecules. 2017;22:1–16.
  • Caires HR, Esteves T, Quelhas P, et al. Macrophage interactions with polylactic acid and chitosan scaffolds lead to improved recruitment of human mesenchymal stem/stromal cells: a comprehensive study with different immune cells. J R Soc Interface. 2016;13:1–12.
  • Singh B, Maharjan S, Cho K-H, et al. Chitosan-based particulate systems for the delivery of mucosal vaccines against infectious diseases. Int J Biol Macromol. 2018;110:54–64.
  • Ritz N, Tebruegge M, Connell TG, et al. Susceptibility of Mycobacterium bovis BCG vaccine strains to antituberculous antibiotics. Antimicrob Agents Chemother. 2009;53:316–318.
  • Feng H, Zhang L, Zhu C. Genipin crosslinked ethyl cellulose-chitosan complex microspheres for anti-tuberculosis delivery. Colloids Surf B Biointerfaces. 2013;103:530–537.
  • Almeida D, Nuermberger E, Tasneen R, et al. Paradoxical effect of isoniazid on the activity of rifampin-pyrazinamide combination in a mouse model of tuberculosis. Antimicrob Agents Chemother. 2009;53:4178–4184.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.