355
Views
36
CrossRef citations to date
0
Altmetric
Research Articles

Pharmacokinetic, toxicokinetic, and bioavailability studies of epigallocatechin-3-gallate loaded solid lipid nanoparticle in rat model

& ORCID Icon
Pages 1506-1514 | Received 29 Dec 2018, Accepted 16 Jun 2019, Published online: 02 Jul 2019

References

  • Lambert JD, Yang CS. Mechanisms of cancer prevention by tea constituents. J Nutr. 2003;133:3244S–3246S.
  • Cascella M, Bimonte S, Muzio MR, et al. The efficacy of epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer’s disease: an overview of pre-clinical studies and translational perspectives in clinical practice, infect. Agent Cancer. 2017;12:1–7.
  • Mandel SA, Amit T, Kalfon L, et al. Targeting multiple neurodegenerative diseases etiologies with multimodal-acting green tea catechins. J Nutr. 2008;138:1578S–1583S.
  • Leichsenring A, Bäcker I, Furtmüller PG, et al. Long-term effects of (-)-epigallocatechin gallate (EGCG) on pristane-induced arthritis (PIA) in female dark agouti rats. PLoS One. 2016;11:e0152518– e0152527.
  • Tominari T, Matsumoto C, Watanabe K, et al. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced inflammatory bone resorption, and protects against alveolar bone loss in mice. FEBS Open Bio. 2015;5:522–527.
  • Rahmani A, Al Shabrmi FM, Allemailem KS, et al. Implications of green tea and its constituents in the prevention of cancer via the modulation of cell signalling pathway. Biomed Res Int. 2015;2015:1–8.
  • Lu YP, Lou YR, Xie JG, et al. Topical applications of caffeine or (-)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice. Proc Natl Acad Sci USA. 2002;99:12455–12460.
  • Thangapazham RL, Singh AK, Sharma A, et al. Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo. Cancer Lett. 2007;245:232–241.
  • Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys. 2010;501:65–72.
  • Zhu QY, Zhang A, Tsang D, et al. Stability of green tea catechins. J Agric Food Chem. 1997;45:4624–4628.
  • Sang S, Lambert JD, Ho CT, et al. The chemistry and biotransformation of tea constituents. Pharmacol Res. 2011;64:87–99.
  • Lambert JD, Yang CS. Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutat Res Fundam Mol Mech Mutagen. 2003;523–524:201–208.
  • Lu H, Meng X, Yang CS. Enzymology of methylation of tea catechins and inhibition of catechol- O -methyltransferase by (-)-epigallocatechin gallate. Drug Metab Dispos. 2003;31:572–579.
  • Hong J, Lambert JD, Lee SH, et al. Involvement of multidrug resistance-associated proteins in regulating cellular levels of (-)-epigallocatechin-3-gallate and its methyl metabolites. Biochem Biophys Res Commun. 2003;310:222–227.
  • Nakagawa K, Okuda S, Miyazawa T. Dose-dependent incorporation of tea catechins, (–)-epigallocatechin-3-gallate and (–)-epigallocatechin, into human plasma. Biosci Biotechnol Biochem. 1997;61:1981–1985.
  • Rainer SG, Muller H, Mader K. Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–177.
  • Quintanilla-Carvajal MX, Camacho-Díaz BH, Meraz-Torres LS, et al. Nanoencapsulation: a new trend in food engineering processing. Food Eng Rev. 2010;2:39–50.
  • Xue J, Tan C, Zhang X, et al. Fabrication of epigallocatechin-3-gallate nanocarrier based on glycosylated casein: stability and interaction mechanism. J Agric Food Chem. 2014;62:4677–4684.
  • Kumar G, Sharma S, Shafiq N, et al. Pharmacokinetics and tissue distribution studies of orally administered nanoparticles encapsulated ethionamide used as potential drug delivery system in management of multi-drug resistant tuberculosis. Drug Deliv. 2011;18:65–73.
  • Dudhipala N, Veerabrahma K. Pharmacokinetic and pharmacodynamic studies of nisoldipine-loaded solid lipid nanoparticles developed by central composite design. Drug Dev Ind Pharm. 2015;41:1968–1977.
  • Mehnert W. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165–196.
  • Subedi RK, Kang KW, Choi HK. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci. 2009;37:508–513.
  • Dahan A, Hoffman A. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J Control Release. 2008;129:1–10.
  • Zheng W, Jain A, Papoutsakis D, et al. Selection of oral bioavailability enhancing formulations during drug discovery. Drug Dev Ind Pharm. 2012;38:235–247.
  • Qi C, Chen Y, Jing QZ, et al. Preparation and characterization of catalase-loaded solid lipid nanoparticles protecting enzyme against proteolysis. Int J Mol Sci. 2011;12:4282–4293.
  • Schwarz C, Mehnert W, Lucks JS, et al. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Control Release. 1994;30:83–96.
  • Radhakrishnan R, Kulhari H, Pooja D, et al. Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chem Phys Lipids. 2016;198:51–60.
  • Ma Q, Xia Q, Lu Y, et al. Preparation of tea polyphenols-loaded solid lipid nanoparticles based on the phase behaviors of hot microemulsions. Solid State Phenom. 2007;123:705–708.
  • Dube A, Nicolazzo JA, Larson I. Assessment of plasma concentrations of (À) -epigallocatechin gallate in mice following administration of a dose reflecting consumption of a standard green tea beverage. Food Chem. 2011;128:7–13.
  • Ravi TP, Mandal AKA. Effect of alcohol on release of green tea polyphenols from casein nanoparticles and its mathematical modeling. Res J Biotechnol. 2015;10:99–104.
  • Chen L, Lee M, Li HE, et al. Absorption, distribution, and elimination of tea polyphenols in rats. Drug Metab Dispos. 1997;25:1045–1050.
  • Chinedu E, Arome D, Ameh FS. A new method for determining acute toxicity in animal models. Toxicol Int. 2013;20:224–227.
  • Galindo-Rodriguez S, Allémann E, Fessi H, et al. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res. 2004;21:1428–1439.
  • Mohanraj VJ, Chen Y, Chen M. Nanoparticles – a review. Trop J Pharm Res. 2006;5:561–573.
  • Saneja A, Nayak D, Srinivas M, et al. Development and mechanistic insight into enhanced cytotoxic potential of hyaluronic acid conjugated nanoparticles in CD44 overexpressing cancer cells. Eur J Pharm Sci. 2017;97:79–91.
  • Ponnuraj R, Janakiraman K, Gopalakrishnan S, et al. Formulation and development of capsules containing rosuvastatin calcium nanoparticles and epigallocatechin gallate nanoparticles. Indo Am J Pharm Res. 2015;5:2217–2231.
  • Akbari Z, Amanlou M, Karimi-sabet J, et al. Preparation and characterization of solid lipid nanoparticles through rapid expansion of supercritical solution. Int J Pharml Sci Res. 2014;5:1693–1704.
  • Hamishehkar H, Shokri J, Fallahi S, et al. Histopathological evaluation of caffeine-loaded solid lipid nanoparticles in efficient treatment of cellulite. Drug Dev Ind Pharm. 2015;41:1640–1646.
  • Panyam J, William D, Dash A, et al. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci. 2004;93:1804–1814.
  • Gómez-Gaete C, Tsapis N, Besnard M, et al. Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm. 2007;331:153–159.
  • Singh NA, Mandal AKA, Khan ZA. Fabrication of PLA-PEG nanoparticles as delivery systems for improved stability and controlled release of catechin. J Nanomater. 2017;2017:1.
  • Dash S, Murthy PN, Nath L, et al. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67:217–223.
  • Lambert JD, Sang S, Yang CS. Biotransformation of green tea polyphenols and the biological activities of those metabolites. Mol Pharm. 2007;4:819–825.
  • Huang S, Zhang Q, Li H, et al. Increased bioavailability of efonidipine hydrochloride nanosuspensions by the wet-milling method. Eur J Pharm Biopharm. 2018;130:108–114.
  • Saraogi GK, Gupta P, Gupta UD, et al. Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int J Pharm. 2010;385:143–149.
  • Kulandaivelu K, Mandal AKA. Improved bioavailability and pharmacokinetics of tea polyphenols by encapsulation into gelatin nanoparticles. IET Nanobiotechnol. 2017;11:469–476.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.