453
Views
25
CrossRef citations to date
0
Altmetric
Research Articles

New approaches to tumor therapy with siRNA-decorated and chitosan-modified PLGA nanoparticles

ORCID Icon & ORCID Icon
Pages 1835-1848 | Received 12 Jul 2019, Accepted 31 Aug 2019, Published online: 19 Sep 2019

References

  • Sarkar S, Horn G, Moulton K. Cancer development, progression, and therapy: an epigenetic overview. Int J Mol Sci. 2013;14(10):21087–21113.
  • Portenoy RK. Treatment of cancer pain. Lancet. 2011;377(9784):2236–2247.
  • Uyar M. Inceleme yazıları meme kanserlerinde agrı tedavısı. SSK Tepecık Hast Derg. 2002;12(1):1–12.
  • Schneider G, Voltz R, Gaertner J. Cancer pain management and bone metastases: an update for the clinician. Breast Care (Basel). 2012;7(2):113–120.
  • Sultan A, McQuay HJ, Moore RA, et al. Single dose oral flurbiprofen for acute postoperative pain in adults. Cochrane Database Syst Rev. 2009;2009(3):1–39.
  • Yin Y, Yi Y, Yu J, et al. Effects of flurbiprofen on serum level of interleukin-6, prostacyclin and corticosteroid A2 in patients with bone metastases of cancer. Oncol Lett. 2018;15(2):1545–1548.
  • Xin Y, Huang M, Guo WW, et al. Nano-based delivery of RNAi in cancer therapy. Mol Cancer. 2017;16(1):134–139.
  • Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432(7014):173–178.
  • Devi GR. siRNA-based approaches in cancer therapy. Cancer Gene Ther. 2006;13(9):819–829.
  • Wang J, Lu Z, Wientjes MG, et al. Delivery of siRNA therapeutics: barriers and carriers. AAPS J. 2010;12(4):492–503.
  • Lee JM, Yoon TJ, Cho YS. Recent developments in nanoparticle-based siRNA delivery for cancer therapy. BioMed Res Int. 2013;2013:1–10.
  • Lunavat TR, Jang SC, Nilsson L, et al. RNAi delivery by exosome-mimetic nanovesicles – implications for targeting c-Myc in cancer. Biomaterials. 2016;102:231–238.
  • Setten RL, Rossi JJ, Han S. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18(6):421–446.
  • Öztürk AA, Martin-Banderas L, Cayero-Otero MD, et al. New approach to hypertension treatment: carvediol-loaded PLGA nanoparticles, preparation, in vitro characterization and gastrointestinal stability. Trop J Pharm Res. 2018;37(9):1730–1741.
  • Khan N, Ameeduzzafar Khanna K, Bhatnagar A, et al. Chitosan coated PLGA nanoparticles amplify the ocular hypotensive effect of forskolin: statistical design, characterization and in-vivo studies. Int J Biol Macromol. 2018;116:648–663.
  • Şenel B, Büyükköroğlu G, Yazan Y. Solid lipid and chitosan particulate systems for delivery of siRNA. Die Pharm. 2015;70(11):698–705.
  • Öztürk AA, Güven UM, Yenilmez E, et al. Effects of different derivatives of eudragit polymer on entrapment efficiency, in vitro dissolution, release kinetics and cell viability results on extended release flurbiprofen loaded nanomedicines. Lat Am J Pharm. 2018;37(10):1981–1992.
  • Yılmaz-Usta D, Demirtaş Ö, Ökçelik C, et al. Evaluation of in vitro dissolution characteristics of flurbiprofen, a BCS class IIa drug. FABAD J Pharm Sci. 2018;43(2):117–124.
  • Matias R, Ribeiro PRS, Sarraguca MC, et al. A UV spectrophotometric method for the determination of folic acid in pharmaceutical tablets and dissolution tests. Anal Methods. 2014;6(9):3065–3071.
  • Öztürk AA, Martin-Banderas L, Cayero-Otero MD, et al. Dexketoprofen trometamol-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles: preparation, in vitro characterization and cytotoxicity. Trop J Pharm Res. 2019;18(1):1–11.
  • Dizaj SM, Jafari S, Khosroushahi AY. A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res Lett. 2014;9(1):252.
  • Drummond DC, Meyer O, Hong K, et al. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51(4):691–743.
  • Ragelle H, Vandermeulen G, Préat V. Chitosan-based siRNA delivery systems. J Control Release. 2013;172(1):207–218.
  • Haussecker D. The business of RNAi therapeutics. Hum Gene Ther. 2008;19(5):451–462.
  • Kang F, Singh J. Preparation, in vitro release, in vivo absorption and biocompatibility studies of insulin-loaded microspheres in rabbits. AAPS Pharm Sci Tech. 2005;6:487–494.
  • Rezvantalab S, Drude NI, Moraveji MK, et al. PLGA-based nanoparticles in cancer treatment. Front Pharmacol. 2018;9:1–19.
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems—a review (part 1). Trop J Pharm Res. 2013;12(2):255–264.
  • de Lima IA, Khalil NM, Tominaga TT, et al. Mucoadhesive chitosan- coated PLGA nanoparticles for oral delivery of ferulic acid. Artif Cells Nanomed Biotechnol. 2018;46(Suppl. 2):993–1002.
  • Perez-Herrero E, Fernandez-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.
  • Ripamonti CI, Bandieri E, Roila F. ESMO Guidelines Working Group. Management of cancer pain: ESMO Clinical Practice Guidelines. Ann Oncol. 2011;22(6):69–77.
  • Arslan D, Tatlı AM, Üyetürk Ü. Kansere bağlı ağrı ve tedavisi. Turk J Bioch. 2013;2(3):256–260.
  • Heinz H, Pramanik C, Heinz O, et al. Nanoparticle decoration with surfactants: molecular interactions, assembly, and applications. Surf Sci Rep. 2017;72(1):1–58.
  • Ilkan MGY, Özdemir N. Investigation of the parameters affecting the release of flurbiprofen from chitosan microspheres. Braz J Pharm Sci. 2017;53(4):1–12.
  • Dora CP, Singh SK, Kumar S, et al. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta Pol Pharm. 2010;67(3):283–290.
  • Zirak MB, Pezeshi A. Effect of surfactant concentration on the particle size, stability and potential zeta of beta carotene nano lipid carrier. Intl J Curr Microbiol App Sci. 2015;4(9):924–932.
  • Mainardes R, Evangelista RC. PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int J Pharm. 2005;290(1–2):137–144.
  • Koppolu B, Rahimi M, Nattama S, et al. Development of multiple-layer polymeric particles for targeted and controlled drug delivery. Nanomedicine. 2010;6(2):355–361.
  • Song H, Su C, Cui W, et al. Folic acid-chitosan conjugated nanoparticles for improving tumor-targeted drug delivery. BioMed Res Int. 2013;2013:1–6.
  • Menon JU, Kona S, Wadajkar AS, et al. Effects of surfactants on the properties of PLGA nanoparticles. J Biomed Mater Res A. 2012;100(8):1998–2005.
  • Büyükköroğlu G, Şenel B, Başaran E, et al. Preparation and in vitro evaluation of vaginal formulations including siRNA and paclitaxel loaded SLNs for cervical cancer. Eur J Pharm Biopharm. 2016;109:174–183.
  • Tripathi A, Gupta R, Saraf SA. PLGA nanoparticles of anti tubercular drug: drug loading and release studies of a water in-soluble drug. Int J Pharm Tech Res. 2010;2:2116–2123.
  • Song KC, Lee HS, Choung IY, et al. The effect of type of organic phase solvents on the particle size of poly(d,l-lactide-co-glycolide) nanoparticles. Colloids Surf A. 2006;276(1–3):162–167.
  • Ran S, Downes A, Thorpe PE. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res. 2002;62(21):6132–6140.
  • Shen S, Wu Y, Liu Y, et al. High drug-loading nanomedicines: progress, current status, and prospects. Int J Nanomedicine. 2017;12:4085–4109.
  • Senapati S, Mahanta AK, Kumar S, et al. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Targeted Ther. 2018;3(7):1–19.
  • Martín-Banderas L, Alvarez-Fuentes J, Durán-Lobato M, et al. Cannabinoid derivate-loaded PLGA nanocarriers for oral administration: formulation, characterization, and cytotoxicity studies. Int J Nanomedicine. 2012;7:5793–5806.
  • Ji J, Zuo P, Wang Y-L. Enhanced antiproliferative effect of carboplatin in cervical cancer cells utilizing folate-grafted polymeric nanoparticles. Nanoscale Res Lett. 2015;10(1):1–8.
  • Fredenberg S, Wahlgren M, Reslow M, et al. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—a review. Int J Pharm. 2011;415(1–2):34–52.
  • Ansary RH, Awang MB, Rahman MM. Biodegradable poly(d,l-lactic-co-glycolic acid)-based micro/nanoparticles for sustained release of protein drugs-A review. Trop J Pharm Res. 2014;13(7):1179–1190.
  • Berkland C, Kim K, Pack DW. PLGA microsphere size controls drug release rate through several competing factors. Pharm Res. 2003;20(7):1055–1062.
  • Singh PK, Sah P, Meher JG, et al. Macrophage-targeted chitosan anchored PLGA nanoparticles bearing doxorubicin and amphotericin B against visceral leishmaniasis. RSC Adv. 2016;6(75):71705–71718.
  • Huang WZC. Tuning the size of poly(lactic-co-glycolic acid) (PLGA) nanoparticles fabricated by nanoprecipitation. Biotechnol J. 2018;13(1):1–19.
  • Sohail MF, Shah PA, Tariq I, et al. Development and in vitro evaluation of flurbiprofen microcapsules prepared by modified solvent evaporation technique. Trop J Pharm Res. 2014;13(7):1031–1038.
  • Paradkar A, Maheshwari M, Tyagi AM, et al. Preparation and characterization of flurbiprofen beads by melt solidification technique. AAPS Pharm Sci Tech. 2003;4(4):1–9.
  • Nayak G, Trivedi MK, Branton A, et al. Consciousness energy healing treatment: impact on the physicochemical and thermal characteristics of folic acid. Int J Nutr. 2018;3(1):30–42.
  • Varshosaz J, Hassanzadeh F, Aliabadi HS, et al. Synthesis and characterization of folate-targeted dextran/retinoic acid micelles for doxorubicin delivery in acute leukemia. BioMed Res Int. 2014;2014:1–14.
  • Singh G, Kaur T, Kaur R, et al. Recent biomedical applications and patents on biodegradable polymer-PLGA. Int J Pharmacol Pharm Sci. 2014;1(2):30–42.
  • Queiroz MF, Melo KRT, Sabry DA, et al. Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs. 2015;13(1):141–158.
  • Chuacharoen T, Sabliov CM. Zein nanoparticles as delivery systems for covalently linked and physically entrapped folic acid. J Nanopart Res. 2017;19(2):1–12.
  • Jin H, Pi J, Yang F, et al. Folate-chitosan nanoparticles loaded with ursolic acid confer anti-breast cancer activities in vitro and in vivo. Sci Rep. 2016;6(30782):1–11.
  • Zhao F, Zhao Y, Liu Y, et al. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 2011;7(10):1322–1337.
  • Lee KD, Choi SH, Kim DH, et al. Self-organized nanoparticles based on chitosan-folic acid and dextran succinate-doxorubicin conjugates for drug targeting. Arch Pharm Res. 2014;37(12):1546–1553.
  • Li HL, He YX, Gao QH, et al. Folate-polyethylene glycol conjugated carboxymethyl chitosan for tumor-targeted delivery of 5-fluorouracil. Mol Med Rep. 2014;9(3):786–792.
  • Mansouri S, Cuie Y, Winnik F, et al. Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials. 2006;27(9):2060–2065.
  • Li K, Liu Y, Zhang S, et al. Folate receptor-targeted ultrasonic PFOB nanoparticles: synthesis, characterization and application in tumor-targeted imaging. Int J Mol Med. 2017;39(6):1505–1515.
  • Fernández M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci. 2018;9(4):790–810.
  • Kim YK, Jiang HL, Choi YJ, et al. Polymeric nanoparticles of chitosan derivatives as DNA and siRNA carriers. Vol. 243. In: Jayakumar R, Prabaharan M, Muzzarelli R, editors. Chitosan for biomaterials. I. Advances in polymer science. Heidelberg: Springer; 2011. p. 1–22.
  • Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine. 2018;4(13):3921–3935.
  • Banerjee K, Pru C, Pru JK, et al. STAT3 Knockdown induces tumor formation by MDA-MB-231 cells. Clin Oncol Res. 2018;1(1):2–8.
  • Huh MS, Lee EJ, Koo H, et al. Polysaccharide-based nanoparticles for gene delivery. In: Cheng Y, editor. Polymeric gene delivery systems. Switzerland: Springer; 2017. p. 65–84.
  • Marquez AR, Madu CO, Lu Y. An overview of various carriers for siRNA delivery. Oncomedicine. 2018;3:48–58.
  • Riley MK, Vermerris W. Recent advances in nanomaterials for gene delivery—a review. Nanomaterials (Basel). 2017;7(5):94–19.
  • Raja MAG, Katas H, Jing Wen T. Stability, intracellular delivery, and release of siRNA from chitosan nanoparticles using different cross-linkers. PLOS One. 2015; 10(6):1–19.
  • Kim TK, Eberwine JH. Mammalian cell transfection: the present and the future. Anal Bioanal Chem. 2010;397(8):3173–3178.
  • Hofland HE, Masson C, Iginla S, et al. Folate-targeted gene transfer in vivo. Mol Ther. 2002;5(6):739–744.
  • Zheng B, Yang S, Wang M, et al. Non-covalent nanocomplexes of folic acid and reducible polyethylenimine for survivin siRNA delivery. Anticancer Res. 2015; 35(10):5433–5441.
  • Du YZ, Cai LL, Li J, et al. Receptor-mediated gene delivery by folic acid-modified stearic acid-grafted chitosan micelles. Int J Nanomedicine. 2011;6:1559–1568.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.