96
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Potential anticancer effect of free and nanoformulated Deferasirox for breast cancer treatment: in-vitro and in-vivo evaluation

, , ORCID Icon, , &
Pages 223-235 | Received 12 Jan 2024, Accepted 30 Jan 2024, Published online: 11 Feb 2024

References

  • Alvarez-Pardo S, Romero-Pérez EM, Camberos-Castañeda N, et al. Health, quality of life in breast cancer survivors in relation to age, type of surgery and length of time since first treatment. IJERPH. 2022;19(23):16229. doi: 10.3390/ijerph192316229.
  • Łukasiewicz S, Czeczelewski M, Forma A, et al. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers. 2021;13(17):4287. doi: 10.3390/cancers13174287.
  • Ko EY, Moon A. Natural products for chemoprevention of breast cancer. J Cancer Prev. 2015;20(4):223–231. doi: 10.15430/JCP.2015.20.4.223.
  • Mitra S, Lami MS, Ghosh A, et al. Hormonal therapy for gynecological cancers: how far has science progressed toward clinical applications? Cancers. 2022;14(3):14. doi: 10.3390/cancers14030759.
  • Noel B, Singh SK, Lillard JW, et al. Role of natural compounds in preventing and treating breast cancer. Front Biosci. 2020;12(1):137–160. doi: 10.2741/S544.
  • Pasha N, Turner N. Understanding and overcoming tumor heterogeneity in metastatic breast cancer treatment. Nat Cancer. 2021;2(7):680–692. doi: 10.1038/s43018-021-00229-1.
  • Shim G, Kim M-G, Kim D, et al. Nanoformulation-based sequential combination cancer therapy. Adv Drug Deliv Rev. 2017;115:57–81. doi: 10.1016/j.addr.2017.04.003.
  • Aggarwal S, Verma SS, Aggarwal S, et al. Drug repurposing for breast cancer therapy: old weapon for new battle. Semin Cancer Biol. 2021;68:8–20. doi: 10.1016/j.semcancer.2019.09.012.
  • Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3(8):673–683. doi: 10.1038/nrd1468.
  • Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58. doi: 10.1038/nrd.2018.168.
  • Heckman-Stoddard BM, DeCensi A, Sahasrabuddhe VV, et al. Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetol. 2017;60(9):1639–1647. doi: 10.1007/s00125-017-4372-6.
  • Lui GY, Kovacevic Z, Richardson V, et al. Targeting cancer by binding iron: dissecting cellular signaling pathways. Oncotarget. 2015;6(22):18748–18779. doi: 10.18632/oncotarget.4349.
  • Lill R, Freibert S-A. Mechanisms of mitochondrial iron-sulfur protein biogenesis. Annu Rev Biochem. 2020;89(1):471–499. doi: 10.1146/annurev-biochem-013118-111540.
  • Brown RA, Richardson KL, Kabir TD, et al. Altered iron metabolism and impact in cancer biology, metastasis, and immunology. Front Oncol. 2020;10:476. doi: 10.3389/fonc.2020.00476.
  • Taghavi F, Saljooghi AS, Gholizadeh M, et al. Deferasirox-coated iron oxide nanoparticles as a potential cytotoxic agent. Med Chem Commun. 2016;7(12):2290–2298. doi: 10.1039/C6MD00293E.
  • Gao Z, Wang D, Yang J, et al. Iron deficiency in hepatocellular carcinoma cells induced sorafenib resistance by upregulating HIF-1α to inhibit apoptosis. Biomed Pharmacother. 2023;163:114750. doi: 10.1016/j.biopha.2023.114750.
  • Kabil MF, Mahmoud MY, Bakr AF, et al. Switching indication of PEGylated lipid nanocapsules-loaded with rolapitant and deferasirox against breast cancer: enhanced in-vitro and in-vivo cytotoxicity. Life Sci. 2022;305:120731. doi: 10.1016/j.lfs.2022.120731.
  • Paranjpe M, Müller-Goymann C. Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci. 2014;15(4):5852–5873. doi: 10.3390/ijms15045852.
  • Son G-H, Na Y-G, Huh HW, et al. Systemic design and evaluation of ticagrelor-loaded nanostructured lipid carriers for enhancing bioavailability and antiplatelet activity. Pharmaceutics. 2019;11(5):222. doi: 10.3390/pharmaceutics11050222.
  • Dallavalle S, Dobričić V, Lazzarato L, et al. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat. 2020;50:100682. doi: 10.1016/j.drup.2020.100682.
  • Kumar P, Yadav N, Chaudhary B, et al. Lipid nanocapsule: a novel approach to drug delivery system formulation development. Curr Pharm Biotechnol. 2024;25(3):268–284. doi: 10.2174/1389201024666230523114350.
  • Huynh NT, Passirani C, Saulnier P, et al. Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm. 2009;379(2):201–209. doi: 10.1016/j.ijpharm.2009.04.026.
  • I El-Gogary R, Gaber SAA, Nasr M. Polymeric nanocapsular baicalin: chemometric optimization, physicochemical characterization and mechanistic anticancer approaches on breast cancer cell lines. Sci Rep. 2019;9(1):11064. doi: 10.1038/s41598-019-47586-7.
  • Heurtault B, Saulnier P, Pech B, et al. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res. 2002;19(6):875–880. doi: 10.1023/a:1016121319668.
  • Nasr M, Abdel-Hamid S. Lipid based nanocapsules: a multitude of biomedical applications. Curr Pharm Biotechnol. 2015;16(4):322–332. doi: 10.2174/138920101604150218103555.
  • Mohsen K, Azzazy HM, Allam NK, et al. Intranasal lipid nanocapsules for systemic delivery of nimodipine into the brain: in vitro optimization and in vivo pharmacokinetic study. Mater Sci Eng C Mater Biol Appl. 2020;116:111236. doi: 10.1016/j.msec.2020.111236.
  • de Araújo DR, Ribeiro L, de Paula E. Lipid-based carriers for the delivery of local anesthetics. Expert Opin Drug Deliv. 2019;16(7):701–714. doi: 10.1080/17425247.2019.1629415.
  • Ramzy L, Metwally AA, Nasr M, et al. Novel thymoquinone lipidic core nanocapsules with anisamide-polymethacrylate shell for Colon cancer cells overexpressing sigma receptors. Sci Rep. 2020;10(1):10987. doi: 10.1038/s41598-020-67748-2.
  • Safwat S, Hathout RM, Ishak RA, et al. Augmented simvastatin cytotoxicity using optimized lipid nanocapsules: a potential for breast cancer treatment. J Liposome Res. 2017;27(1):1–10. doi: 10.3109/08982104.2015.1137313.
  • Volpe DA, Hamed SS, Zhang L. Use of different parameters and equations for calculation of IC 50 values in efflux assays: potential sources of variability in IC 50 determination. AAPS J. 2014;16(1):172–180. doi: 10.1208/s12248-013-9554-7.
  • Nigjeh SE, Yeap SK, Nordin N, et al. In vivo anti-tumor effects of citral on 4T1 breast cancer cells via induction of apoptosis and downregulation of aldehyde dehydrogenase activity. Molecules. 2019;24:3241. doi: 10.3390/molecules24183241.
  • Harima H, Kaino S, Takami T, et al. Deferasirox, a novel oral iron chelator, shows antiproliferative activity against pancreatic cancer in vitro and in vivo. BMC Cancer. 2016;16(1):702. doi: 10.1186/s12885-016-2744-9.
  • Benson MJ, Elgueta R, Schpero W, et al. Distinction of the memory B cell response to cognate antigen versus bystander inflammatory signals. J Exp Med. 2009;206(9):2013–2025. doi: 10.1084/jem.20090667.
  • Wuputra K, Tsai MH, Kato K, et al. Dimethyl sulfoxide stimulates the AhR-Jdp2 axis to control ROS accumulation in mouse embryonic fibroblasts. Cell Biol Toxicol. 2022;38(2):203–222. doi: 10.1007/s10565-021-09592-2.
  • Bancroft JD, Gamble M. Theory and practice of histological techniques. China: Elsevier Health Sciences; 2008.
  • Bajbouj K, Shafarin J, Hamad M. Treatment, high-dose deferoxamine treatment disrupts intracellular iron homeostasis, reduces growth, and induces apoptosis in metastatic and nonmetastatic breast cancer cell lines. Technol Cancer Res Treat. 2018;17:1533033818764470. doi: 10.1177/1533033818764470.
  • Choi JH, Kim JS, Won YW, et al. The potential of deferasirox as a novel therapeutic modality in gastric cancer. World J Surg Oncol. 2016;14(1):77. doi: 10.1186/s12957-016-0829-1.
  • Basu SM, Yadava SK, Singh R, et al. Lipid nanocapsules co-encapsulating paclitaxel and salinomycin for eradicating breast cancer and cancer stem cells, colloids and surfaces B: biointerfaces. Colloids Surf B Biointerfaces. 2021;204:111775. doi: 10.1016/j.colsurfb.2021.111775.
  • Veisi H, Varshosaz J, Rostami M, et al. Thermosensitive TMPO-oxidized lignocellulose/cationic agarose hydrogel loaded with deferasirox nanoparticles for photothermal therapy in melanoma. Int J Biol Macromol. 2023;238:124126. doi: 10.1016/j.ijbiomac.2023.124126.
  • Fukumura D, Kashiwagi S, Jain R. The role of nitric oxide in tumour progression. Nat Rev Cancer. 2006;6(7):521–534. doi: 10.1038/nrc1910.
  • Tran AN, Boyd NH, Walker K, et al. NOS expression and NO function in glioma and implications for patient therapies. Antioxid Redox Signal. 2017;26(17):986–999. doi: 10.1089/ars.2016.6820.
  • Feng CW, Wang LD, Jiao LH, et al. Expression of p53, inducible nitric oxide synthase and vascular endothelial growth factor in gastric precancerous and cancerous lesions: correlation with clinical features. BMC Cancer. 2002;2(1):8. doi: 10.1186/1471-2407-2-8.
  • Lee K-M, Kang D, Park SK, et al. Nitric oxide synthase gene polymorphisms and prostate cancer risk. J. Carcinog. 2009;30(4):621–625. doi: 10.1093/carcin/bgp028.
  • Lin Z, Chen S, Ye C, et al. Nitric oxide synthase expression in human bladder cancer and its relation to angiogenesis. Urol Res. 2003;31(4):232–235. doi: 10.1007/s00240-003-0302-9.
  • Fujita M, Somasundaram V, Basudhar D, et al. Role of nitric oxide in pancreatic cancer cells exhibiting the invasive phenotype. Redox Biol. 2019;22:101158. doi: 10.1016/j.redox.2019.101158.
  • Zhang L, Zeng M, Fu BM. Inhibition of endothelial nitric oxide synthase decreases breast cancer cell MDA-MB-231 adhesion to intact microvessels under physiological flows. Am J Physiol Heart Circ Physiol. 2016;310(11):H1735–H1747. doi: 10.1152/ajpheart.00109.2016.
  • Bulut AS, Erden E, Sak SD, et al. Significance of inducible nitric oxide synthase expression in benign and malignant breast epithelium: an immunohistochemical study of 151 cases. Virchows Arch. 2005;447(1):24–30. doi: 10.1007/s00428-005-1250-2.
  • Jadeski LC, Hum KO, Chakraborty C, et al. Nitric oxide promotes murine mammary tumour growth and metastasis by stimulating tumour cell migration, invasiveness and angiogenesis. Int J Cancer. 2000;86(1):30–39. doi: 10.1002/(SICI)1097-0215(20000401)86:1<30::AID-IJC5>3.0.CO;2-I.
  • Walter PB, Macklin EA, Porter J, et al. Inflammation and oxidant-stress in β-thalassemia patients treated with iron chelators deferasirox (ICL670) or deferoxamine: an ancillary study of the novartis CICL670A0107 trial. Haematologica. 2008;93(6):817–825. doi: 10.3324/haematol.11755.
  • Vlahakos D, Arkadopoulos N, Kostopanagiotou G, et al. Deferoxamine attenuates lipid peroxidation, blocks interleukin-6 production, ameliorates sepsis inflammatory response syndrome, and confers renoprotection after acute hepatic ischemia in pigs. Artif Organs. 2012;36(4):400–408. doi: 10.1111/j.1525-1594.2011.01385.x.
  • Giorgi G, Mascaró M, Gandini NA, et al. Iron cycle disruption by heme oxygenase-1 activation leads to a reduced breast cancer cell survival. Biochim Biophys Acta Mol Basis Dis. 2023;1869(3):166621. doi: 10.1016/j.bbadis.2022.166621.
  • Zhao Y, Li H, Gao Z, et al. Effects of dietary baicalin supplementation on iron overload-induced mouse liver oxidative injury. Eur J Pharmacol. 2005;509(2-3):195–200. doi: 10.1016/j.ejphar.2004.11.060.
  • Wu G, Lupton JR, Turner ND, et al. Glutathione metabolism and its implications for health. J Nutr. 2004;134(3):489–492. doi: 10.1093/jn/134.3.489.
  • Lu SC. Regulation of glutathione synthesis, molecular aspects of medicine. Mol Aspects Med. 2009;30(1-2):42–59. doi: 10.1016/j.mam.2008.05.005.
  • Huang Z-Z, Chen C, Zeng Z, et al. Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. FASEB J. 2001;15(1):19–21. doi: 10.1096/fj.00-0445fje.
  • Anderton B, Camarda R, Balakrishnan S, et al. MYC-driven inhibition of the glutamate-cysteine ligase promotes glutathione depletion in liver cancer. EMBO Rep. 2017;18(4):569–585. doi: 10.15252/embr.201643068.
  • Yoo D, Jung E, Noh J, et al. Glutathione-depleting pro-oxidant as a selective anticancer therapeutic agent. ACS Omega. 2019;4(6):10070–10077. doi: 10.1021/acsomega.9b00140.
  • Endl E, Gerdes J. The Ki-67 protein: fascinating forms and an unknown function. Exp Cell Res. 2000;257(2):231–237. doi: 10.1006/excr.2000.4888.
  • Zheng J-N, Ma T-X, Cao J-Y, et al. Knockdown of Ki-67 by small interfering RNA leads to inhibition of proliferation and induction of apoptosis in human renal carcinoma cells. Life Sci. 2006;78(7):724–729. doi: 10.1016/j.lfs.2005.05.064.
  • Cuzick J, Dowsett M, Pineda S, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the genomic health recurrence score in early breast cancer. J Clin Oncol. 2011;29(32):4273–4278. doi: 10.1200/JCO.2010.31.2835.
  • Sarno F, Papulino C, Franci G, et al. Nebbioso, 3-Chloro-Nʹ-(2-hydroxybenzylidene) benzohydrazide: an LSD1-selective inhibitor and iron-chelating agent for anticancer therapy. Front Pharmacol. 2018;9:1006. doi: 10.3389/fphar.2018.01006.
  • Kuban-Jankowska A, Sahu KK, Gorska-Ponikowska M, et al. Inhibitory activity of iron chelators ATA and DFO on MCF-7 breast cancer cells and phosphatases PTP1B and SHP2. Anticancer Res. 2017;37:4799–4806.
  • Lan L, Wei W, Zheng Y, et al. Deferoxamine suppresses esophageal squamous cell carcinoma cell growth via ERK1/2 mediated mitochondrial dysfunction. Cancer Lett. 2018;432:132–143. doi: 10.1016/j.canlet.2018.06.012.
  • Toyokuni S. Iron-induced carcinogenesis: the role of redox regulation. Free Radic Biol Med. 1996;20(4):553–566. doi: 10.1016/0891-5849(95)02111-6.
  • Kim JL, Lee D-H, Na YJ, et al. Iron chelator-induced apoptosis via the ER stress pathway in gastric cancer cells. Tumour Biol. 2016;37(7):9709–9719. doi: 10.1007/s13277-016-4878-4.
  • Li MX, Dewson G. Mitochondria and apoptosis: emerging concepts. F1000Prime Rep. 2015;7:42. doi: 10.12703/P7-42.
  • Cleary ML, Smith SD, Sklar JJC. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t (14; 18) translocation. Cell. 1986;47(1):19–28. doi: 10.1016/0092-8674(86)90362-4.
  • Bargou RC, Daniel PT, Mapara MY, et al. Expression of the bcl-2 gene family in normal and malignant breast tissue: low bax-α expression in tumor cells correlates with resistance towards apoptosis. Int J Cancer. 1995;60(6):854–859. doi: 10.1002/ijc.2910600622.
  • Alam S, Mohammad T, Padder RA, et al. Thymoquinone and quercetin induce enhanced apoptosis in non-small cell lung cancer in combination through the bax/Bcl2 Cascade. J Cell Biochem. 2022;123(2):259–274. doi: 10.1002/jcb.30162.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.