209
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Soil aggregate variation in two contrasting rice straw recycling systems for paddy soil amendment over two years

, , , , , , , , , & show all
Pages 3044-3059 | Received 17 Apr 2022, Accepted 25 Mar 2023, Published online: 30 Mar 2023

References

  • Agbede TM, Adekiya AO. 2020. Influence of biochar on soil physicochemical properties, erosion potential, and maize (Zea mays L.) grain yield under sandy soil condition. Commun Soil Sci Plant Anal. 51(20):2559–2568. doi:10.1080/00103624.2020.1845348.
  • An N, Zhang L, Liu YX, Shen S, Li N, Wu ZC, Yang JF, Han W, Han XR. 2022. Biochar application with reduced chemical fertilizers improves soil pore structure and rice productivity. Chemosphere. 298:134304. doi:10.1016/j.chemosphere.2022.134304.
  • Bai NL, Zhang HL, Zhou S, Sun HF, Zhao YH, Zheng XQ, Li SX, Zhang JQ, Lv WG. 2020. Long-term effects of straw return and straw-derived biochar amendment on bacterial communities in soil aggregates. Sci Rep. 10(1):7891. doi:10.1038/s41598-020-64857-w.
  • Bao SD. 2000. Soil agrochemical analysis. M. 3rd ed. China (BJ): Agricultural Press.
  • Berhane M, Xu M, Liang Z, Shi J, Wei G, Tian X. 2020. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: a meta-analysis. Glob Change Biol. 26(4):2686–2701. doi:10.1111/gcb.15018.
  • Bronick CJ, Lal R. 2005. Soil structure and management: a review. Geoderma. 124:3–22. doi:10.1016/j.geoderma.2004.03.005.
  • Cambardella CA, Elliott ET. 1993. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci Soc Am J. 57(4):1071–1076. doi:10.2136/sssaj1993.03615995005700040032x.
  • Chen WF. 2019. Inaugural editorial: pioneering the innovation and exploring the future for biochar technology. Biochar. 1(1):1. doi:10.1007/s42773-019-00010-9.
  • Chen WF, Meng J, Han XR, Lan Y, Zhang WM. 2019. Past, present, and future of biochar. Biochar. 1(1):75–87. doi:10.1007/s42773-019-00008-3.
  • Christensen BT. 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur J Soil Sci. 52(3):345–353. doi:10.1046/j.1365-2389.2001.00417.x.
  • Crystal-Ornelas R, Thapa R, Tully KL. 2021. Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: a meta-analysis. Agric Ecosyst Environ. 312:107356. doi:10.1016/j.agee.2021.107356.
  • Dominguez EL, Uttran A, Loh SK, Manero MH, Upperton R, Tanimu MI, Bachmann RT. 2020. Characterisation of industrially produced oil palm kernel shell biochar and its potential as slow release nitrogen-phosphate fertilizer and carbon sink. Mater Today Proc. 31:221–227. doi:10.1016/j.matpr.2020.05.143.
  • Dong D, Feng QB, McGrouther K, Yang M, Wang HL, Wu WX. 2015. Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. J Soils Sediments. 15(1):153–162. doi:10.1007/s11368-014-0984-3.
  • Fu JP, Zhang JS, Xiong Y. 1983. The properties of colloidal complexes of paddy soils in Taihu lake region. Acta Pedol Sin. 20(2):112–128. [In Chinese].
  • Golchin A, Oades JM, Skjemstad JO, Clarke P. 1994. Soil structure and carbon cycling. Aust J Soil Res. 32(5):1043–1068. doi:10.1071/SR9941043.
  • Guan S, Liu SJ, Liu RY, Zhang JJ, Ren J, Cai HG, Lin XX., Lin X-X. 2019. Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw. J Integr Agric. 18(7):1496–1507. doi:10.1016/S2095-3119(19)62643-2.
  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS. 2010. Significant acidification in major Chinese croplands. Science. 327(5968):1008–1010. doi:10.1126/science.1182570.
  • Gwenzi W, Nyambishi TJ, Chaukura N, Mapope N. 2017. Synthesis and nutrient release patterns of a biochar-based N-P-K slow-release fertilizer. Int J Environ Sci Technol. 15(2):405–414. doi:10.1007/s13762-017-1399-7.
  • He X, Chen J, Li Y, Chen YJ, Zhao GK, Ren K, Hu MY, Hu BB, Chen Y, Xu ZL, et al. 2021. Seasonal dynamics of soil aggregates and associated C and N stocks in different fertilizer managements. Arch Agron Soil Sci. 68(10):1305–1321. doi:10.1080/03650340.2021.1892649.
  • He YB, Xu C, Gu F, Wang Y, Chen JZ. 2018. Soil aggregate stability improves greatly in response to soil water dynamics under natural rains in long-term organic fertilization. Soil Tillage Res. 184:281–290. doi:10.1016/j.still.2018.08.008.
  • Hossain MZ, Bahar MM, Sarkar B, Donne SW, Ok YS, Palansooriya KN, Kirkham MB, Chowdhury S, Bolan N. 2020. Biochar and its importance on nutrient dynamics in soil and plant. Biochar. 2(4):379–420. doi:10.1007/s42773-020-00065-z.
  • Huang R, Lan ML, Liu J, Gao M. 2017. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning. Environ Sci Pollut Res. 24(36):27942–27952. doi:10.1007/s11356-017-0372-9.
  • Huang R, Tian D, Liu J, Lv S, He XH, Gao M. 2018. Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system. Agric Ecosyst Environ. 265:576–586. doi:10.1016/j.agee.2018.07.013.
  • Humberto BC, Rattan L. 2004. Mechanisms of carbon sequestration in soil aggregates. Crit Rev Plant Sci. 23(6):481–504. doi:10.1080/07352680490886842.
  • John B, Yamashita T, Ludwig B, Flessa H. 2004. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma. 128(1):63–79. doi:10.1016/j.geoderma.2004.12.013.
  • Karimi A, Moezzi A, Chorom M, Enayatizamir N. 2020. Application of biochar changed the status of nutrients and biological activity in a calcareous soil. J Soil Sci Plant Nutr. 20(2):450–459. doi:10.1007/s42729-019-00129-5.
  • Kizito S, Luo HZ, Lu JX, Bah H, Dong RJ, Wu SB. 2019. Role of nutrient-enriched biochar as a soil amendment during maize growth: exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability. 11(11):3211. doi:10.3390/su11113211.
  • Lateef A, Nazir R, Jamil N, Alam S, RazaShah NM, Saleem M, Rehman S, Rehman S-U. 2019. Synthesis and characterization of environmental friendly corncob biochar based nano-composite – a potential slow release nano-fertilizer for sustainable agriculture. Environ Nanotechnol Monit Manage. 11:100212. doi:10.1016/j.enmm.2019.100212.
  • Li H, Cao Y, Wang XM, Ge X, Li BQ, Jin CQ. 2017. Evaluation on the production of food crop straw in China from 2006 to 2014. BioEnergy Res. 10(3):949–957. doi:10.1007/s12155-017-9845-4.
  • Li FQ, Qiu PF, Shen B, Shen QR. 2019. Soil aggregate size modifies the impacts of fertilization on microbial communities. Geoderma. 343:205–214. doi:10.1016/j.geoderma.2019.02.039.
  • Liu XB, Zhang XY, Wang YX, Sui YY, Zhang SL, Herbert SJ, Ding G. 2010. Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China. Plant Soil Environ. 56(2):87–97. doi:10.17221/155/2009-PSE.
  • Mazurak AP. 1950. Effect of gaseous phase on water-stable synthetic aggregates. Soil Sci. 69(2):135–148. doi:10.1097/00010694-195002000-00005.
  • Meng J, He TY, Sanganyado E, Lan Y, Zhang WM, Han XR, Chen WF. 2019. Development of the straw biochar returning concept in China. Biochar. 1(2):139–149. doi:10.1007/s42773-019-00019-0.
  • Miao SJ, Qiao YF, Li P, Han XZ, Tang CX. 2017. Fallow associated with autumn-plough favors structure stability and storage of soil organic carbon compared to continuous maize cropping in Mollisols. Plant Soil. 416:27–38. doi:10.1007/s11104-017-3187-z.
  • Nciizah AD, Wakindiki IIC. 2015. Physical indicators of soil erosion, aggregate stability and erodibility. Arch Agron Soil Sci. 61(6):827–842. doi:10.1080/03650340.2014.956660.
  • Samahadthai P, Vityakon P, Saenjan P. 2010. Effects of different quality plant residues on soil carbon accumulation and aggregate formation in a tropical sandy soil in Northeast Thailand as revealed by a 10-year field experiment. Land Degrad Dev. 21(5):463–473. doi:10.1002/ldr.982.
  • Schrumpf M, Kaiser K, Guggenberger G, Persson T, Kögel-Knabner I, Schulze ED. 2013. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences. 10(3):1675–1691. doi:10.5194/bg-10-1675-2013.
  • Seleiman MF, Refay Y, Al-Suhaibani N, Al-Ashkar I, El-Hendawy S, Hafez EM. 2019. Integrative effects of rice-straw biochar and silicon on oil and seed quality, yield and physiological traits of helianthus annuus L. Grown under water deficit stress. Agronomy-Basel. 9(10):637. doi:10.3390/agronomy9100637.
  • Shan AQ, Pan JQ, Kang KJ, Pan MH, Wang G, Wang M, He ZL, Yang XE. 2021. Effects of straw return with N fertilizer reduction on crop yield, plant diseases and pests and potential heavy metal risk in a Chinese rice paddy: a field study of 2 consecutive wheat-rice cycles. Environ Pollut. 288:117741. doi:10.1016/j.envpol.2021.117741.
  • Sheng M, Long JH, Lei WY, Xx H, Li N, Xz H, Lj L. 2020. Effect of straw returning on the characteristics of Fourier Infrared Spectroscopy organic carton within aggregates in a Mollisols. Soil Crop. 9(4):355–366. [In Chinese].
  • Six J, Elliott ET, Paustian K. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem. 32(14):2099–2103. doi:10.1016/S0038-0717(00)00179-6.
  • Sun Q, Meng J, Lan Y, Shi GH, Yang X, Cao DY, Chen WF, Han XR. 2021. Long-term effects of biochar amendment on soil aggregate stability and biological binding agents in brown earth. Catena. 205:105460. doi:10.1016/j.catena.2021.105460.
  • Sun Q, Meng J, Sarkar B, Lan Y, Lin L, Li HF, Yang X, Chen WF, Wang HL, Wang H. 2020. Long-term influence of maize stover and its derived biochar on soil structure and organo-mineral complexes in Northeast China. Environ Sci Pollut Res. 27(22):28374–28383. doi:10.1007/s11356-020-08171-y.
  • Tisdall JM, Oades JM. 1982. Organic matter and water-stable aggregates in soils. Eur J Soil Sci. 33(2):141–163. doi:10.1111/j.1365-2389.1982.tb01755.x.
  • Van BC. 1950. Mean weight-diameter of soil aggregates as a statistical index of aggregation. Soil Sci Soc Am J. 14:20–23. doi:10.2136/sssaj1950.036159950014000C0005x.
  • Wander MM, Bollero GA. 1999. Soil quality assessment of tillage impacts in llinois. Soil Sci Soc Am J. 63(4):961–971. doi:10.2136/sssaj1999.634961x.
  • Whalen JK, Bottomley PJ, Myrold DD. 2000. Carbon and nitrogen mineralization from light- and heavy-fraction additions to soil. Soil Biol Biochem. 32:1345–1352. doi:10.1016/S0038-0717(00)00040-7.
  • Wu P, Ata-Ul-Karim ST, Singh BP, Wang HL, Wu TL, Liu C, Fang GD, Zhou DM, Wang YJ, Chen WF. 2019. A scientometric review of biochar research in the past 20 years (1998-2018). Biochar. 1(1):23–43. doi:10.1007/s42773-019-00002-9.
  • Xiu LQ, Zhang WM, Sun YY, Wu D, Meng J, Chen WF. 2019. Effects of biochar and straw returning on the key cultivation limitations of Albic soil and soybean growth over 2 years. Catena. 173:481–493. doi:10.1016/j.catena.2018.10.041.
  • Yamashita T, Flessa H, John B, Helfrich M, Ludwig B. 2006. Organic matter in density fractions of water-stable aggregates in silty soils: effect of land use. Soil Biol Biochem. 38(11):3222–3234. doi:10.1016/j.soilbio.2006.04.013.
  • Yang CW, Xing F, Zhu JC, Li RH, Zhang ZQ. 2023. Temporal and spatial distribution, utilization status, and carbon emission reduction potential of straw resources in China. Environ Sci. 44(2):1149–1162. [In Chinese].
  • Zhang WM, Chen WF, Meng J, Jin L, Guo W, Zhao HL. 2019. Study of straw-biochar on utilization potential, industry model and developing strategy in northeast China. Sci Agric Sin. 52(14):2406–2424. [In Chinese].
  • Zhang S, Cui JW, Wu H, Zheng Q, Song DL, Wang XB, Zhang SQ. 2021. Organic carbon, total nitrogen, and microbial community distributions within aggregates of calcareous soil treated with biochar. Agric Ecosyst Environ. 314:107408. doi:10.1016/j.agee.2021.107408.
  • Zhang QQ, Duan PP, Gunina A, Zhang X, Yan XY, Kuzyakov Y, Xiong ZQ. 2021. Mitigation of carbon dioxide by accelerated sequestration from long-term biochar amended paddy soil. Soil Tillage Res. 209:104955. doi:10.1016/j.still.2021.104955.
  • Zhang JW, Li WW, Zhou Y, Ding YF, Xu L, Jiang Y, Li GH. 2021. Long-term straw incorporation increases rice yield stability under high fertilization level conditions in the rice-wheat system. Crop J. 9(5):1191–1197. doi:10.1016/j.cj.2020.11.007.
  • Zhang JJ, Wei YX, Liu JZ, Yuan JC, Liang Y, Ren J, Cai HG. 2019. Effects of maize straw and its biochar application on organic and humic carbon in water-stable aggregates of a Mollisol in Northeast China: a five-year field experiment. Soil Tillage Res. 190:1–9. doi:10.1016/j.still.2019.02.014.
  • Zhang WM, Xiu LQ, Wu D, Sun YY, Gu WQ, Zhang HG, Meng J, Chen WF. 2021. Review of biochar structure and physicochemical properties. Acta Agron Sin. 47(1):1–18. In Chinese. doi:10.3724/SP.J.1006.2021.02021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.