126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effects of Fe- and Mn-oxides and imogolite in the presence of kaolinite on organic nitrogen mineralization and soil enzyme activities

, , &
Pages 3120-3138 | Received 28 Aug 2022, Accepted 29 Apr 2023, Published online: 08 May 2023

References

  • Alef K, Nannipieri P. 1995. Methods in applied soil microbiology and biochemistry. London: Academic Press.
  • Allison SD. 2006. Soil minerals and humic acids alter enzyme stability: implications for ecosystem processes. Biogeochemistry. 81(3):361–373. doi:10.1007/s10533-006-9046-2.
  • Amelung W, Miltner A, Zhang X, Zech W. 2001. Fate of microbial residues during litter decomposition as affected by minerals. Soil Sci. 166(9):598–606. doi:10.1097/00010694-200109000-00003.
  • Amelung W, Zhang X. 2001. Determination of amino acid enantiomers in soils. Soil Biol Biochem. 33(4–5):553–562. doi:10.1016/S0038-0717(00)00195-4.
  • Aomine S, Kobayashi Y. 1964. Effects of allophane on the enzymatic activity of a protease. J Soil Sci Plant Nutr. 10(1):28–32. doi:10.1080/00380768.1964.10431063.
  • Bae H, Cota-Robles E, Casida L. 1972. Microflora of soil as viewed by transmission electron microscopy. Appl Microbiol. 23(3):637–648. doi:10.1128/am.23.3.637-648.1972.
  • Basile-Doelsch I, Balesdent J, Pellerin S. 2020. Reviews and syntheses: the mechanisms underlying carbon storage in soil. Biogeosciences. 17(21):5223–5242. doi:10.5194/bg-17-5223-2020.
  • Batjes NH. 2014. Total carbon and nitrogen in the soils of the world. Eur J Soil Sci. 65(1):10–21. doi:10.1111/ejss.12114_2.
  • Bauhus J, Pare D, Co ̂té L. 1998. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol Biochem. 30(8–9):1077–1089. doi:10.1016/S0038-0717(97)00213-7.
  • Boonfueng T, Axe L, Xu Y. 2005. Properties and structure of manganese oxide-coated clay. J Colloid Interface Sci. 281(1):80–92. doi:10.1016/j.jcis.2004.08.048.
  • Boudot JP, Hadj AB, Steiman R, Seigle-Murandi F. 1989. Biodegradation of synthetic organo-metallic complexes of iron and aluminium with selected metal to carbon ratios. Soil Biol Biochem. 21(7):961–966. doi:10.1016/0038-0717(89)90088-6.
  • Bouwman H, Zwart BL, Zwart KB, Brussaard L. 1993. Relationships between habitable pore space, soil biota and mineralization rates in grassland soils. Soil Biol Biochem. 25(1):47–55. doi:10.1016/0038-0717(93)90240-C.
  • Brookes PC, Landman A, Pruden G, Jenkinson DS. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem. 17(6):837–842. doi:10.1016/0038-0717(85)90144-0.
  • Burns RG. 1986. Interaction of enzymes with soil mineral and organic colloids. Vol. 17. Springer, Boston, MA: Soil Science Society of America.
  • Cai A, Feng W, Zhang W, Xu M. 2016. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China. J Environ Manage. 172:2–9. doi:10.1016/j.jenvman.2016.02.009.
  • Chorover J, Amistadi MK. 2001. Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces. Geochim Cosmochim Acta. 65(1):95–109. doi:10.1016/S0016-7037(00)00511-1.
  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. 2013. The MIcrobial Efficiency‐matrix StabIlization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol. 19(4):988–995. doi:10.1111/gcb.12113.
  • Curtin D, Beare MH, Lehto K, Tregurtha C, Qiu W, Tregurtha R, Peterson M. 2017. Rapid assays to predict nitrogen mineralization capacity of agricultural soils. SSSAJ. 81(4):979–991. doi:10.2136/sssaj2016.08.0265.
  • Elliott ET, Coleman DC. 1988. Let the soil work for us. Ecol Bull. 39:23–32.
  • Farmer V, Russell J, Berrow M. 1980. Imogolite and proto‐imogolite allophane in spodic horizons: evidence for a mobile aluminium silicate complex in podzol formation. J Soil Sci. 31(4):673–684. doi:10.1111/j.1365-2389.1980.tb02113.x.
  • Farzadfar S, Knight JD, Congreves KA. 2021. Soil organic nitrogen: an overlooked but potentially significant contribution to crop nutrition. Plant Soil. 462(1):7–23. doi:10.1007/s11104-021-04860-w.
  • Feng W, Plante AF, Aufdenkampe AK, Six J. 2014. Soil organic matter stability in organo-mineral complexes as a function of increasing C loading. Soil Biol Biochem. 69:398–405. doi:10.1016/j.soilbio.2013.11.024.
  • Gianfreda L, Rao M, Sannino F, Saccomandi F, Violante A. 2002. Enzymes in soil: properties, behavior and potential applications. Developments in soil science. Elsevier. 28(2):301–327.
  • Hassink WA, Whitmore AP. 1997. A model of the physical protection of organic matter in soils. SSSAJ. 61(1):131–139. doi:10.2136/sssaj1997.03615995006100010020x.
  • Heckman K, Welty-Bernard A, Vazquez-Ortega A, Schwartz E, Chorover J, Rasmussen C. 2013. The influence of goethite and gibbsite on soluble nutrient dynamics and microbial community composition. Biogeochemistry. 112(1–3):179–195. doi:10.1007/s10533-012-9715-2.
  • Hu Y, Zheng Q, Zhang S, Noll L, Wanek W. 2018. Significant release and microbial utilization of amino sugars and D-amino acid enantiomers from microbial cell wall decomposition in soils. Soil Biol Biochem. 123:115–125. eng. doi:10.1016/j.soilbio.2018.04.024.
  • Illmer P, Erlebach C. 2003. Influence of Al on growth, cell size and content of intracellular water of Arthrobacter sp. PI/1-95. Antonie Van Leeuwenhoek. 84(3):239–246. doi:10.1023/A:1026024428451.
  • Jansen B, Nierop KGJ, Verstraten JM. 2003. Mobility of Fe(II), Fe(III) and Al in acidic forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon ratios. Geoderma. 113(3):323–340. doi:10.1016/S0016-7061(02)00368-3.
  • Jastrow JD, Amonette JE, Bailey VL. 2007. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim Change. 80(1–2):5–23. doi:10.1007/s10584-006-9178-3.
  • Joergensen RG, Mueller T. 1996. The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEN value. Soil Biol Biochem. 28(1):33–37. doi:10.1016/0038-0717(95)00101-8.
  • Journet E, Balkanski Y, Harrison SP. 2014. A new data set of soil mineralogy for dust-cycle modeling. Atmos Chem Phys. 14(8):3801–3816. doi:10.5194/acp-14-3801-2014.
  • Kaiser K, Zech W. 1999. Release of natural organic matter sorbed to oxides and a subsoil. SSSAJ. 63(5):1157–1166. doi:10.2136/sssaj1999.6351157x.
  • Kijima T. 2010. Inorganic and metallic nanotubular materials: recent technologies and applications. Vol. 117. Springer Berlin, Heidelberg: Springer Science and Business Media.
  • Klute A. 1986. Water retention: laboratory methods. methods of soil analysis: part 1-physical and mineralogical methods. 2 ed. Madison: Soil Science Society of America, American Society of Agronomy; pp. 635–662.
  • Kobayashi Y, Aomine S. 1967. Mechanism of inhibitory effect of allophane and montmorillonite on some enzymes. J Soil Sci Plant Nutr. 13(6):189–194. doi:10.1080/00380768.1967.10431995.
  • Kögel‐knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P. 2008. Organo‐mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci. 171(1):61–82. doi:10.1002/jpln.200700048.
  • Ladd J, Van Gestel M, Monrozier LJ, Amato M. 1996. Distribution of organic 14C and 15N in particle-size fractions of soils incubated with 14C, 15N-labelled glucose/NH4, and legume and wheat straw residues. Soil Biol Biochem. 28(7):893–905. doi:10.1016/0038-0717(96)00069-7.
  • Lavelle P, Blanchart E, Martin A, Martin S, Spain A. 1993. A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica. 25(2):130–150. doi:10.2307/2389178.
  • Lehmann J, Kleber M. 2015. The contentious nature of soil organic matter. Nature. 528(7580):60–68. doi:10.1038/nature16069.
  • Liang C, Balser TC. 2011. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat Rev Microbiol. 9(1):75. doi:10.1038/nrmicro2386-c1.
  • Liddle K, McGonigle T, Koiter A. 2020. Microbe biomass in relation to organic carbon and clay in soil. Soil Systems. 4(3):41. doi:10.3390/soilsystems4030041.
  • Lopez-Sangil L, Rovira P. 2013. Sequential chemical extractions of the mineral-associated soil organic matter: an integrated approach for the fractionation of organo-mineral complexes. Soil Biol Biochem. 62:57–67. doi:10.1016/j.soilbio.2013.03.004.
  • Marx M-C, Kandeler E, Wood M, Wermbter N, Jarvis S. 2005. Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol Biochem. 37(1):35–48. doi:10.1016/j.soilbio.2004.05.024.
  • Mikutta R, Kleber M, Torn MS, Jahn R. 2006. Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry. 77(1):25–56. doi:10.1007/s10533-005-0712-6.
  • Miltner A, Bombach P, Schmidt-Brücken B, Kästner M. 2012. SOM genesis: microbial biomass as a significant source. Biogeochemistry. 111(1):41–55. doi:10.1007/s10533-011-9658-z.
  • Mulder J, De Wit HA, Boonen HW, Bakken LR. 2001. Increased Levels of Aluminium in Forest Soils: Effects on the Stores of Soil Organic Carbon. Water, Air, & Soil Pollution. 130:989–994. doi:10.1023/A:1013987607826.
  • Naidja A, Huang P, Bollag JM. 2000. Enzyme‐clay interactions and their impact on transformations of natural and anthropogenic organic compounds in soil. J Environ Qual. 29(3):677–691. doi:10.2134/jeq2000.00472425002900030002x.
  • Nasseau M, Boublik Y, Meier W, Winterhalter M, Fournier D. 2001. Substrate‐permeable encapsulation of enzymes maintains effective activity, stabilizes against denaturation, and protects against proteolytic degradation. Biotechnol Bioeng. 75(5):615–618. doi:10.1002/bit.10074.
  • Nikolaidis NP, Bidoglio G. 2013. Soil organic matter dynamics and structure. Sustainable agriculture reviews. Springer, Dordrecht: Springer. pp. 175–199.
  • Oades JM. 1988. The retention of organic matter in soils. Biogeochemistry. 5(1):35–70. doi:10.1007/BF02180317.
  • Olagoke FK, Kaiser K, Mikutta R, Kalbitz K, Vogel C. 2020. Persistent activities of extracellular enzymes adsorbed to soil minerals. Microorganisms. 8(11):1796. doi:10.3390/microorganisms8111796.
  • Olagoke FK, Kalbitz K, Vogel C. 2019. Control of soil extracellular enzyme activities by clay minerals—perspectives on microbial responses. Soil Systems. 3(4):64. doi:10.3390/soilsystems3040064.
  • Rakhsh F, Golchin A. 2018. Carbohydrate concentrations and enzyme activities as influenced by exchangeable cations, mineralogy and clay content. Appl Clay Sci. 163:214–226. doi:10.1016/j.clay.2018.07.031.
  • Rakhsh F, Golchin A, Al Agha AB, Alamdari P. 2017. Effects of exchangeable cations, mineralogy and clay content on the mineralization of plant residue carbon. Geoderma. 307:150–158. doi:10.1016/j.geoderma.2017.07.010.
  • Rakhsh F, Golchin A, Al Agha AB, Nelson PN. 2020. Mineralization of organic carbon and formation of microbial biomass in soil: effects of clay content and composition and the mechanisms involved. Soil Biol Biochem. 151:108036. doi:10.1016/j.soilbio.2020.108036.
  • Rao MA, Gianfreda L. 2000. Properties of acid phosphatase–tannic acid complexes formed in the presence of Fe and Mn. Soil Biol Biochem. 32(13):1921–1926. doi:10.1016/S0038-0717(00)00167-X.
  • Rao MA, Gianfreda L, Palmiero F, Violante A. 1996. Interactions of acid phosphatase with clays, organic molecules and organo-mineral complexes1. Soil Sci. 161(11):751–760. doi:10.1097/00010694-199611000-00004.
  • Rao MA, Violante A, Gianfreda L. 2000. Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes: kinetics and stability. Soil Biol Biochem. 32(7):1007–1014. doi:10.1016/S0038-0717(00)00010-9.
  • Rayment GE, Lyons DJ. 2011. Soil Chemical Methods. Vol. 3. Australasia: CSIRO Publishing.
  • Riaz M, Marschner P. 2020. Sandy soil amended with clay soil: effect of clay soil properties on soil respiration, microbial biomass, and water extractable organic C. J Soil Sci Plant Nutr. 20(4):2465–2470. doi:10.1007/s42729-020-00312-z.
  • Ross DJ, Tate KR, Cairns A. 1982. Biochemical changes in a yellow-brown loam and a central gley soil converted from pasture to maize in the Waikato area. New Zealand J Agric. 25(1):Res.35–42. doi:10.1080/00288233.1982.10423370.
  • Ros G, Temminghoff E, Hoffland E. 2011. Nitrogen mineralization: a review and meta‐analysis of the predictive value of soil tests. Eur J Soil Sci. 62(1):162–173. doi:10.1111/j.1365-2389.2010.01318.x.
  • Saidy AR, Smernik RJ, Baldock JA, Kaiser K, Sanderman J, Macdonald LM. 2012. Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma. 173:104–110. doi:10.1016/j.geoderma.2011.12.030.
  • Sanjay G, Sugunan S. 2008. Acid activated montmorillonite: an efficient immobilization support for improving reusability, storage stability and operational stability of enzymes. J Porous Mater. 15(3):359–367. doi:10.1007/s10934-006-9089-8.
  • San Martín W. 2020. Global Nitrogen in Sustainable Development: Four Challenges at the Interface of Science and Policy. In: Leal Filho W, Azul A, Brandli L, Lange Salvia A Wall T, editors. Life on Land. Encyclopedia of the UN Sustainable Development Goals. Cham: Springer. doi:10.1007/978-3-319-71065-5_114-1.
  • Schimel J, Becerra CA, Blankinship J. 2017. Estimating decay dynamics for enzyme activities in soils from different ecosystems. Soil Biol Biochem. 114:5–11. doi:10.1016/j.soilbio.2017.06.023.
  • Schinner F, Von Mersi W. 1990. Xylanase, CM-cellulase and invertase activity in soil: an improved method. Soil Biol Biochem. 22(4):511–515. doi:10.1016/0038-0717(90)90187-5.
  • Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DA. 2011. Persistence of soil organic matter as an ecosystem property. Nature. 478(7367):49–56. doi:10.1038/nature10386.
  • Schwertmann U, Cornell RM. 2008. Iron oxides in the laboratory: preparation and characterization. John Wiley and Sons.
  • Schwesig D, Kalbitz K, Matzner E. 2003. Effects of aluminium on the mineralization of dissolved organic carbon derived from forest floors. Eur J Soil Sci. 54(2):311–322. doi:10.1046/j.1365-2389.2003.00523.x.
  • Sherman GD, Tom AK, Fujimoto CK. 1949. The origin and composition of pyrolusite concretions in Hawaiian soils. Pac Sci. 3:120–123.
  • Sorensen LH. 1981. Carbon-nitrogen relationships during the humification of cellulose in soils containing different amounts of clay. Soil Biol Biochem. 13(4):313–321. doi:10.1016/0038-0717(81)90068-7.
  • Stursova M, Sinsabaugh RL. 2008. Stabilization of oxidative enzymes in desert soil may limit organic matter accumulation. Soil Biol Biochem. 40(2):550–553. doi:10.1016/j.soilbio.2007.09.002.
  • Subramanian V, Zhu H, Wei B. 2008. Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte. Chem Phys Lett. 453(4–6):242–249. doi:10.1016/j.cplett.2008.01.042.
  • Suddick EC, Whitney P, Townsend AR, Davidson EA. 2013. The role of nitrogen in climate change and the impacts of nitrogen–climate interactions in the United States: foreword to thematic issue. Biogeochemistry. 114(1):1–10. doi:10.1007/s10533-012-9795-z.
  • Tabatabai M. 1994. Soil Enzymes. In: Weaver R, editor. Methods of soil analysis. Madison, WI: Soil Science Society of America.
  • Tietjen T, Wetzel RG. 2003. Extracellular enzyme-clay mineral complexes: enzyme adsorption, alteration of enzyme activity, and protection from photodegradation. Aquat Ecol. 37(4):331–339. doi:10.1023/B:AECO.0000007044.52801.6b.
  • Tisdall JM, Oades JM. 1982. Organic matter and water‐stable aggregates in soils. Eur J Soil Sci. 33(2):141–163. doi:10.1111/j.1365-2389.1982.tb01755.x.
  • Wallenstein M, Allison SD, Ernakovich J, Steinweg JM, Sinsabaugh R. 2010. Controls on the temperature sensitivity of soil enzymes: a key driver of in situ enzyme activity rates. Soil Enzymology. Berlin, Heidelberg: Springer. pp. 245–258.
  • Yang F, Xu Z, Huang Y, Tsang DC, Ok YS, Zhao L, Qiu H, Xu X, Cao X. 2021. Stabilization of dissolvable biochar by soil minerals: release reduction and organo-mineral complexes formation. J Hazard Mater. 412:125213. doi:10.1016/j.jhazmat.2021.125213.
  • Yan J, Pan G, Li L, Quan G, Ding C, Luo A. 2010. Adsorption, immobilization, and activity of β-glucosidase on different soil colloids. J Colloid Interface Sci. 348(2):565–570. doi:10.1016/j.jcis.2010.04.044.
  • Yoshinaga N, Aomine S. 1962. Imogolite in some ando soils. J Soil Sci Plant Nutr. 8(3):22–29. doi:10.1080/00380768.1962.10430993.
  • Zimmerman AR, Gao B, Ahn M-Y. 2011. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem. 43(6):1169–1179. doi:10.1016/j.soilbio.2011.02.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.