197
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of nitrogen sources on grain yield of wheat and net global warming potential

, , , , , & ORCID Icon show all
Pages 3314-3327 | Received 09 May 2022, Accepted 20 Jun 2023, Published online: 27 Jun 2023

References

  • Ahmed CS, Terao T, Murata F, Hayashi T. 2012. Seasonal variations of temperature and rainfall characteristics in the northeastern part of Bangladesh around Sylhet. J Agrofor Environ. 6:81–88.
  • Allison LE. 1965. Organic carbon. Methods of soil analysis. Part 2. Chemical and microbiological properties. Madison, USA:Am Soc Agron. pp. 1367–1378. doi: 10.2134/agronmonogr9.2.c39
  • BBS. 2019. Yearbook of Agricultural Statistics-2019. 31st Series. Dhaka: Statistics and Informatics Division. Bangladesh Bureau of Statistics. Ministry of Planning. Government of the people’s republic of Bangladesh.
  • BBS (Bangladesh Bureau of Statistics). 2022. Population and housing census 2022. Preliminary report. Ministry of planning. Government of the people’s republic of Bangladesh.
  • Biswas JC, Haque MM, Hossain MB, Maniruzzaman M, Zahan T, Rahman MM, Sen R, Ishtiaque S, Chaki AK, Ahmed IM, et al. 2022. Season variations in grain yield, greenhouse gas emissions and carbon sequestration for maize cultivation in Bangladesh. Sustainability. 14(15):9144. doi:10.3390/su14159144.
  • Biswas JC, Haque MM, Maniruzzaman M, Hossain MB, Naher UA, Rahman MM, Akhter S, Ahmed F, Akhtar S, Biswas JK. 2021. Greenhouse gas emission and carbon sequestration during wheat cultivation in Bangladesh. J Agric Inno Dev. 1:71–80.
  • Bremner JM, Mulvaney CS. 1982. Total nitrogen. In: methods of soil analysis, Part 2, Chemical and microbiological properties. In: Page A, Miller R Keeney D, editors Soil sci soc am. Madison, WI, USA: Inc.; Am Soc Agron Inc; pp. 595–624.
  • Chatterjee D, Mohanty SS, Guru PK, Swain CK, Tripathi R, Shahid M, Kumar U, Kumar A, Bhattacharyya P, Gautam P, et al. 2018. Comparative assessment of urea briquette applications on greenhouse gas emission, nitrogen loss and soil enzymatic activities in tropical lowland rice. Agric Ecosyst Environ. 252:178–190. doi:10.1016/j.agee.2017.10.013.
  • Chen F, Zeng D, Singh AN, Chen G. 2005. Effects of soil moisture and soil depth on nitrogen mineralization process under Mongolian pine plantations in Zhanggutai sandy land. PR China J Fores Res. 16(2):101–104. doi: 10.1007/BF02857899
  • Fox RL, Olson RA, Rhoades HF. 1964. Evaluating the sulfur status of soil by plant and soil tests. Soil Sci Soc Am Proc. 28(2):243–246. doi: 10.2136/sssaj1964.03615995002800020034x
  • FRG (Fertilizer Recommendation Guide). 2012. Bangladesh agricultural research council. Farmgate, Dhaka, Bangladesh: Bangladesh Agricultural Research Council.
  • Gaihre YK, Singh U, Islam SMM, Huda A, Islam MR, Sanabria J, Satter MA, Islam MR, Biswas JC, Jahiruddin M, et al. 2018. Nitrous oxide and nitric oxide emissions and nitrogen use efficiency as affected by nitrogen placement in lowland rice fields. Nutr Cycl Agroecosyst. 110(2):277–291. doi: 10.1007/s10705-017-9897-z
  • Gerland P, Raftery EA, Sevcikova H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick KB, Chunn J, Lalic N, et al. 2014. World population stabilization unlikely this century. Science. 346(6206):234–237. doi: 10.1126/science.1257469
  • Gupta DK, Bhatia A, Kumar A, Das TK, Jain N, Tomer R, Malyan SK, Fagodiya RK, Dubey R, Pathak H. 2016. Mitigation of greenhouse gas emission from rice-wheat system of the Indo-Gangetic plains: through tillage, irrigation and fertilizer management. Agric Ecosyst Environ. 230:1–9. doi:10.1016/j.agee.2016.05.023.
  • Hadas A, Feigin A, Feigenbaum S, PORTNOY R. 1989. Nitrogen mineralization in the field at various soil depths. J Soil Sci. 40(1):131–137. doi: 10.1111/j.1365-2389.1989.tb01261.x
  • Haque MM, Biswas JC. 2021. Emission factors and global warming potential as influenced by fertilizer management for the cultivation of rice under varied growing seasons. Environ Res. 197:111156. doi:10.1016/j.envres.2021.111156.
  • Haque MM, Biswas JC, Akter M, Maniruzaman M, Kabir MS. 2019b. Carbon budget and aggregate stability of paddy soil under continuous organic amendment. Commun Soil Sci Plant Anal. 50(15):1829–1837. doi: 10.1080/00103624.2019.1635148
  • Haque MM, Biswas JC, Hwang HY, Kim PJ. 2020b. Annual net carbon budget in rice soil. Nutr Cycl Agroecosyst. 116(1):31–40. doi: 10.1007/s10705-019-10029-w
  • Haque MM, Biswas JC, Islam MR, Islam A, Kabir MS. 2019a. Effect of long-term chemical and organic fertilization on rice productivity, nutrient use-efficiency, and balance under a rice-fallow-rice system. J Plant Nutr. 42(20):2901–2914. doi: 10.1080/01904167.2019.1659338
  • Haque MM, Biswas JC, Maniruzaman M, Akhter S, Kabir MS. 2020a. Carbon sequestration in paddy soil as influenced by organic and inorganic amendments. Carbon Manag. 11(3):231–239. doi: 10.1080/17583004.2020.1738822
  • Haque MM, Biswas JC, Maniruzzaman M, Hossain MB, Islam MR. 2021. Water management and soil amendment for reducing emission factor and global warming potential but improving rice yield. Paddy Water Environ. 19(3):515–527. doi: 10.1007/s10333-021-00851-w
  • Haque MM, Biswas JC, Salahin N, Alam MK, Akhter S, Akhtar S, Maniruzzaman M, Hossain MS. 2023. Tillage systems influence on greenhouse gas emission factor and global warming potential under rice-mustard-rice cropping system. Arch Agron Soil Sci. 69(4):599–614. doi: 10.1080/03650340.2021.2020758
  • Haque MM, Kim SY, Ali MA, Kim PJ. 2015. Contribution of greenhouse gas emissions during cropping and fallow seasons on total global warming potential in mono-rice paddy soils. Plant Soil. 387(1–2):251–264. doi: 10.1007/s11104-014-2287-2
  • Haque MM, Kim SY, Pramanik P, Kim GY, Kim PJ. 2013. Optimum application level of winter cover crop biomass as green manure under considering methane emission and rice productivity in paddy soil. Biol Fertil Soils. 49(4):487–493. doi: 10.1007/s00374-012-0766-2
  • Hasan MM, Alauddin M, Sarker MAR, Jakaria M, Alamgir M. 2019. Climate sensitivity of wheat yield in Bangladesh: implications for the United Nations sustainable development goals 2 and 6. Land Use Policy. 87:104023. doi: 10.1016/j.landusepol.2019.104023.
  • Hasukawa H, Inoda Y, Toritsuka S, Sudo S, Oura N, Sano T, Shirato Y, Yanai J. 2021. Effect of paddy-upland rotation system on the net greenhouse gas balance as the sum of methane and nitrous oxide emissions and soil carbon storage: a case in western Japan. Agriculture. 11(1):52. doi: 10.3390/agriculture11010052
  • Hoben JP, Gehl RJ, Millar N, Grace PR, Robertson GP. 2011. Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Glob Chang Biol. 17(2):1140–1152. doi: 10.1111/j.1365-2486.2010.02349.x
  • Hwang HY, Kim GW, Kim SY, Haque MM, Khan MI, Kim PJ. 2017. Effect of cover cropping on the net global warming potential of rice paddy soil. Geoderma. 292:49–58. doi:10.1016/j.geoderma.2017.01.001.
  • IPCC. 2014. Climate change 2014: synthesis report. In: Core Writing Team, Pachauri, R. K., meyer, L. A. (Eds). Contribution of Working Group I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva: IPCC; p. 151.
  • IPC (Integrated Food Security Phase Classification). 2023. Bangladesh: chronic food insecurity situation 2019-2024. https://www.ipcinfo.Org/ipc–country–analysis/details–map/fi/c/1155697/?iso3=BGD (Access on 27-3-2023).
  • Iqbal J, Ronggui H, Lijun D, Lan L, Shan L, Tao C, Leilei R. 2008. Differences in soil CO2 flux between different land use types in mid-subtropical China. Soil Biol Biochem. 40(9):2324–2333. doi: 10.1016/j.soilbio.2008.05.010
  • Ito A, Nishina K, Ishijima K, Hashimoto S, Inatomi M. 2018. Emissions of nitrous oxide (N2O) from soil surfaces and their historical changes in East Asia: a model-based assessment. Prog Earth Planet Sci. 5(1):55. doi: 10.1186/s40645-018-0215-4
  • Kögel-Knabner I, Amelung W, Cao ZH, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M. 2010. Biogeochemistry of paddy soils. Geoderma. 157(1–2):1–14. doi: 10.1016/j.geoderma.2010.03.009
  • Kumar K, Karmakar S, Minz A, Singh J, Kumar A, Kumar A. 2021. Assessment of greenhouse gases emission in maize-wheat cropping system under varied N fertilizer application using cool farm tool. Front Environ Sci. 9:710108. doi:10.3389/fenvs.2021.710108.
  • Leppelt T, Dechow R, Gebbert S, Freibauer A, Lohila A, Augustin J, Drosler M, Fiedler S, Glatzel S, Hoper H, et al. 2014. Nitrous oxide emission hotspots from organic soils in Europe. Biogeosci Discuss. 11:9135–9182.
  • Lou Y, Li Z, Zhang T, Liang Y. 2004. CO2 emissions from subtropical arable soils of China. Soil Biol Biochem. 36(11):1835–1842. doi: 10.1016/j.soilbio.2004.05.006
  • Ma YC, Kong XW, Yang B, Zhang XL, Yan XY, Yang JC, Xiong ZQ. 2013. Net global warming potential and greenhouse gas intensity of annual rice-wheat rotations with integrated soil crop system management. Agric Ecosyst Environ. 164:209–219. doi:10.1016/j.agee.2012.11.003.
  • Mohanty S, Nayak AK, Kumar A, Tripathi R, Shahid M, Bhattacharyya P, Raja R, Panda BB. 2013. Carbon and nitrogen mineralization kinetics in soil of rice-rice system under long term application of chemical fertilizers and farmyard manure. Eur J Soil Biol. 58:113–121. doi:10.1016/j.ejsobi.2013.07.004.
  • Olsen RV, Ellis R Jr. 1982. Iron. Methods of soil analysis. Part 2. Chemical and microbiological properties. In: Page A, editor. Soil sci soc am. Madison, WI, USA: Inc.; Am Soc Agron Inc; pp. 301–312. doi: 10.2134/agronmonogr9.2.2ed.c17
  • Rahman MM, Miah MG. 2017. Wheat production in North West region of Bangladesh. Bang J Admin Manag. 15-17:59–77.
  • Robertson GP, Paul EA, Harwood RR. 2000. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science. 289(5486):1922–1925. doi: 10.1126/science.289.5486.1922
  • Sapkota TB, Jat ML, Rana SD, Chhetri AK, Jat HS, Bijarniya D, Sutaliya JM, Kumar M, Singh LK, Jat RK, et al. 2021. Crop nutrient management using Nutrient Expert improves yield, increases farmers’ income and reduces greenhouse gas emissions. Sci Rep. 11(1):1564. doi: 10.1038/s41598-020-79883-x
  • Sarker MSH. 2021. Regional spatial and temporal variability of rainfall, temperature over Bangladesh and Northern Bay of Bengal. Environ Challen. 5:100309. doi:10.1016/j.envc.2021.100309.
  • SAS Institute. 1995. System for windows release 9.1. NC, USA: SAS Institute.
  • Shiferaw B, Prasanna MB, Hellin J, Banziger M. 2011. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Sec. 3(3):307–327. doi: 10.1007/s12571-011-0140-5
  • Shi Y, Huang G, An C, Zhou Y, Yin J. 2021. Assessment of regional greenhouse gas emissions from spring wheat cropping system: a case study of Saskatchewan in Canada. J Clean Prod. 301:126917. doi:10.1016/j.jclepro.2021.126917.
  • Sihi D, Dari B, Sharma DK, Pathak H, Nain L, Sharma OP. 2017. Evaluation of soil health in organic vs. conventional farming of basmati rice in North India. J Plant Nutr Soil Sci. 180(3):389–406. doi: 10.1002/jpln.201700128
  • Singh S, Singh J, Kashyap A. 1999. Methane flux from irrigated rice fields in relation to crop growth and N-fertilization. Soil Biol Biochem. 31(9):1219–1228. doi: 10.1016/S0038-0717(99)00027-9
  • Smith P, Lanigan G, Kutsch WL, Buchmann N, Eugster W, Aubinet M, Ceschia E, Béziat P, Yeluripati JB, Osborne B, et al. 2010. Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agric Ecosyst Environ. 139(3):302–315. doi:10.1016/j.agee.2010.04.004.
  • Su M, Kuang F, Lv Y, Shi X, Liu X, Shen J, Zhang F. 2017. Nitrous oxide and methane emissions from paddy soils in southwest China. Geoderma Reg. 8:1–11. doi:10.1016/j.geodrs.2016.12.003.
  • Takakai F, Nakagawa S, Sato K, Kon K, Sato T, Kaneta Y. 2017. Net greenhouse gas budget and soil carbon storage in a field with paddy–upland rotation with different history of manure application. Agriculture. 7(6):49. doi: 10.3390/agriculture7060049
  • Walkley A, Black IA. 1934. An examination of digestion method for determining soil organic matter and a proposed modification of the chromic acid titration. Soil Sci. 37(1):29–38. doi: 10.1097/00010694-193401000-00003
  • Xiao Y, Xie G, Lu G, Ding X, Lu Y. 2005. The value of gas exchange as a service by rice paddies in suburban Shanghai, PR China. Agric Ecosyst Environ. 109(3–4):273–283. doi: 10.1016/j.agee.2005.03.016
  • Zaehle S, Ciais P, Friend AD, Prieur V. 2011. Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nat Geosci. 4(9):601–605. doi: 10.1038/ngeo1207
  • Zhang X, Fan C, Ma Y, Liu Y, Li Y, Zhou Q, Xiong Z. 2014. Two approaches for net ecosystem carbon budgets and soil carbon sequestration in a rice–wheat rotation system in China. Nutr Cycl Agroecosyst. 100(3):301–313. doi: 10.1007/s10705-014-9651-8
  • Zhou M, Zhu B, Butterbach-Bahe K, Wang X, Zheng X. 2014. Nitrous oxide emissions during the non-rice growing seasons of two subtropical rice-based rotation systems in Southwest China. Plant Soil. 383(1–2):401–414. doi: 10.1007/s11104-014-2174-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.