272
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Agronomic Zn biofortification through nano ZnO application enhanced growth, photosystem efficiency, Zn and P nutrition in maize

, , &
Pages 3328-3344 | Received 13 Feb 2023, Accepted 26 Jun 2023, Published online: 05 Jul 2023

References

  • Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Subba Rao A. 2015. Characterization of zinc oxide nano particles and their effect on growth of maize (Zea mays L.) plant. J Plant Nutr. 38(10):1505–1515. doi: 10.1080/01904167.2014.992536
  • Adil M, Bashir S, Bashir S, Aslam Z, Ahmad N, Younas T, Asghar RMA, Alkahtani J, Dwiningsih Y, Elshikh MS. 2022. Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. Front Plant Sci. 13:932861. doi: 10.3389/fpls.2022.932861
  • Ahmad N. 2004. Food and Agriculture Organization of the United Nations (FAO) Fertilizer use by crop in Pakistan. 1st ed. Rome: FAO. [accessed 2023 June 20] Retrieved from. https://www.fao.org/3/y5460e/y5460e03.htm.
  • Ahmed N, Habib U, Younis U, Irshad I, Danish S, Rahi AA, Munir TM. 2020. Growth, chlorophyll content and productivity responses of maize to magnesium sulphate application in calcareous soil. Open Agric. 5(1):792–800. doi: 10.1515/opag-2020-0023.
  • Ahmed R, Uddin M, Quddus M, Samad MYA, Hossain MAM, Haque ANA. 2023. Impact of foliar application of zinc and zinc oxide nanoparticles on growth, yield, nutrient uptake and quality of tomato. Horticulturae. 9(2):162. doi: 10.3390/horticulturae9020162
  • Alia, Saradhi PP. 1991. Proline accumulation under heavy metal stress. J Plant Physiol. 138(5):554–558. doi: 10.1016/S0176-1617(11)80240-3
  • Alloway BJ. 2009. Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health. 31(5):537–548. doi: 10.1007/s10653-009-9255-4
  • Armarego-Marriott T, Kowalewska Ł, Burgos A, Fischer A, Thiele W, Erban A, Strand D, Kahlau S, Hertle A, Kopka J, et al. 2019. Highly resolved systems biology to dissect the etioplast-to-chloroplast transition in tobacco leaves. Plant Physiol. 180(1):654–681. doi: 10.1104/pp.18.01432
  • Asim M, Ahmad W, Qamar Z, Awais M, Nepal J, Ahmad I. 2022. Seed coating with zinc oxide nanofiber (ZnONF) and urea improved zinc uptake; recovery efficiency, growth, and yield of bread wheat (Triticum aestivum L.). J Soil Sci Plant Nutr. 22(4):5009–5020. doi: 10.1007/s42729-022-00978-7
  • Bafaro E, Liu Y, Xu Y, Dempski RE. 2017. The emerging role of zinc transporters in cellular homeostasis and cancer. Signal Transduction Targeted Ther. 2(1):1–12. doi: 10.1038/sigtrans.2017.29.
  • Bates LS, Waldren RA, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207. doi: 10.1007/BF00018060
  • Bhatt R, Hossain A, Sharma P. 2020. Zinc biofortification as an innovative technology to alleviate the zinc deficiency in human health: a review. Open Agric. 5(1):176–186. doi: 10.1515/opag-2020-0018
  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. 2007. Zinc in plants. New Phytol. 173(4):677–702. doi: 10.1111/j.1469-8137.2007.01996.x
  • Cakmak I, Kutman UB. 2018. Agronomic biofortification of cereals with zinc: a review. Eur J Soil Sci. 69(1):172–180. doi: 10.1111/ejss.12437
  • Carillo P, Gibon Y. 2011. PROTOCOL: extraction and determination of Proline. PrometheusWiki. 2011:1–5. [accessed 2023 Jun 7]. https://www.researchgate.net/publication/211353600.
  • Cruz Y, Villar S, Gutiérrez K, Montoya-Ruiz C, Gallego JL, Delgado MDP, Saldarriaga JF. 2021. Gene expression and morphological responses of Lolium perenne L. exposed to cadmium (Cd2+) and mercury (Hg2+). Sci Rep. 11(1):1–11. doi: 10.1038/s41598-021-90826-y
  • Del Buono D, Di Michele A, Costantino F, Trevisan M, Lucini L. 2021. Biogenic ZnO nanoparticles synthesized using a novel plant extract: application to enhance physiological and biochemical traits in maize. Nanomaterials. 11(5):1270. doi: 10.3390/nano11051270.
  • Dimkpa CO, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC. 2019. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci Total Environ. 688:926–934. doi: 10.1016/j.scitotenv.2019.06.392
  • Elemike EE, Uzoh IM, Onwudiwe DC, Babalola OO. 2019. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl Sci. 9(3):499. doi: 10.3390/app9030499
  • Elshoky HA, Yotsova E, Farghali MA, Farroh KY, El-Sayed K, Elzorkany HE, Rashkov G, Dobrikova A, Borisova P, Stefanov M, et al. 2021. Impact of foliar spray of zinc oxide nanoparticles on the photosynthesis of Pisum sativum L. under salt stress. Plant Physiol Biochem. 167:607–618. doi: 10.1016/j.plaphy.2021.08.039
  • García-Gómez C, García-Gutiérrez S, Obrador A, Fernández MD. 2020. Study of Zn availability, uptake, and effects on earthworms of zinc oxide nanoparticle versus bulk applied to two agricultural soils: acidic and calcareous. Chemosphere. 239:124814. doi: 10.1016/j.chemosphere.2019.124814
  • García-Gómez C, Obrador A, González D, Babín M, Fernández MD. 2018. Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil. Sci Total Environ. 644:770–780. doi: 10.1016/j.scitotenv.2018.06.356
  • Hayyawi NJH, Al-Issawi MH, Alrajhi AA, Al-Shmgani H, Rihan H, Sanan Mishra N. 2020. Molybdenum induces growth, yield, and defence system mechanisms of the Mung Bean (Vigna radiata L.) under water stress conditions. Int J Agron. 2020:1–10. doi: 10.1155/2020/8887329
  • Hossain MA, Jahiruddin M, Islam MR, Mian MH. 2008. The requirement of zinc for improvement of crop yield and mineral nutrition in the maize–mungbean–rice system. Plant Soil. 306(1–2):13–22. doi: 10.1007/s11104-007-9529-5
  • Hossain A, Mottaleb KA, Farhad M, Deb Barma NC. 2019. Mitigating the twin problems of malnutrition and wheat blast by one wheat variety, “BARI Gom 33”, in Bangladesh. Acta Agrobot. 72(2). doi: 10.5586/aa.1775
  • Hussain F, Hadi F, Rongliang Q. 2021a. Effects of zinc oxide nanoparticles on antioxidants, chlorophyll contents, and proline in Persicaria hydropiper L. and its potential for Pb phytoremediation. Environ Sci Pollut Res. 28(26):34697–34713. doi: 10.1007/s11356-021-13132-0
  • Hussain F, Hadi F, Rongliang Q. 2021b. Effects of zinc oxide nanoparticles on antioxidants, chlorophyll contents, and proline in Persicaria hydropiper L. and its potential for Pb phytoremediation. Environ Sci Pollut Res. 28(26):34697–34713. doi: 10.1007/s11356-021-13132-0
  • Islam S, Hamid FS, Shah BH, Zaman Q, Khan N, Ahmad F, Aftab S. 2018. Response of organic & inorganic fertilizers to the growth, yield and soil nutrient status in tomato (Lycopersion esculentum). Open Acad J Adv Sci Technol. 2(1):1–4. doi: 10.33094/5.2017.2018.21.1.4
  • Kanwal SR, Maqsood MA, Bakhat HFSG, Bakhat HFSG. 2009. Zinc requirement of maize hybrids and indigenous varieties on Udic Haplustalf. J Plant Nutr. 32(3):470–478. doi: 10.1080/01904160802661782
  • Kihara J, Nziguheba G, Zingore S, Coulibaly A, Esilaba A, Kabambe V, Njoroge S, Palm C, Huising J. 2016. Understanding variability in crop response to fertilizer and amendments in sub-Saharan Africa. Agric Ecosyst Environ. 229:1–12. doi: 10.1016/j.agee.2016.05.012
  • Kösesakal T, Ünal M. 2009. Role of zinc deficiency in photosynthetic pigments and peroxidase activity of tomato seedlings. IUFS J Biol. 68(2):113–120. doi: 10.18478/iufsjb.62201
  • Kumar S, Verma G, Dhaliwal SS, Sharma V. 2022. Influence of zinc fertilization levels and frequencies on crop productivity, zinc uptake and buildup of soil zinc in maize–wheat system. J Plant Nutr. 45(12):1774–1785. doi: 10.1080/01904167.2022.2027970
  • Lichtenthaler HK, Buschmann C. 2001. Extraction of photosynthetic tissues: chlorophylls and carotenoids. Curr Protoc Food Anal Chem. accessed 2023 Jun 81(1):F4.2.1–F4.2.6. doi: 10.1002/0471142913.faf0402s01
  • Lichtenthaler HK, Buschmann C. 2005. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Handb Food Anal Chem. 2–2:171–178. accessed 2023 Jun 8. doi: 10.1002/0471709085.ch21
  • Liu H, Gan W, Rengel Z, Zhao P. 2016. Effects of zinc fertilizer rate and application method on photosynthetic characteristics and grain yield of summer maize. J Soil Sci Plant. 16(2):550–562. doi: 10.4067/S0718-95162016005000045 Nutr.
  • Marreiro DDN, Cruz KJC, Morais JBS, Beserra JB, Severo JS, de Oliveira AS. 2017. Zinc and oxidative stress: current mechanisms. Antioxidants. 6(2):24. doi: 10.3390/antiox6020024
  • Mehlich A. 1984. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal. 15(12):1409–1416. doi: 10.1080/00103628409367568
  • Nadeem F, Farooq M. 2019. Application of micronutrients in rice-wheat cropping system of South Asia. Rice Sci. 26(6):356–371. doi: 10.1016/j.rsci.2019.02.002
  • Nepal J, Xin X, Maltais-Landry G, Wright AL, Stoffella PJ, Ahmad W, He ZL. 2022. Water-dispersible carbon nanomaterials improve lettuce (Lactuca sativa) growth and enhance soil biochemical quality at low to medium application rates. Plant Soil. 485(1–2):569–587. doi: 10.1007/s11104-022-05852-0
  • Obrador A, González D, Almendros P, García-Gómez C, Fernández MD. 2022. Assessment of phytotoxicity and behavior of 1-year-aged Zn in soil from ZnO nanoparticles, bulk ZnO, and Zn sulfate in different soil-plant cropping systems: from biofortification to toxicity. J Soil Sci Plant Nutr. 22(1):150–164. doi: 10.1007/s42729-021-00640-8
  • Oxborough K, Baker NR. 1997. Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components - Calculation of qP and Fv’/Fm’ without measuring Fo’. Photosynth Res. 54(2):135–142. doi: 10.1023/A:1005936823310
  • Pedruzzi DP, Araujo LO, Falco WF, Machado G, Casagrande GA, Colbeck I, Lawson T, Oliveira SL, Caires ARL. 2020. ZnO nanoparticles impact on the photosynthetic activity of Vicia faba: effect of particle size and concentration. NanoImpact. 19:100246. doi: 10.1016/j.impact.2020.100246
  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Raja Reddy K, Sreeprasad TS, Sajanlal PR, Pradeep T. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal Of Plant Nutrition. 35(6):905–927. doi: 10.1080/01904167.2012.663443
  • Recena R, García-López AM, Delgado A. 2021. Zinc uptake by plants as affected by fertilization with Zn sulfate, phosphorus availability, and soil properties. Agron. 11(2):390. doi: 10.3390/agronomy11020390
  • Reddy Pullagurala VL, Adisa IO, Rawat S, Kalagara S, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. 2018. ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation in soil grown cilantro (Coriandrum sativum). Plant Physiol Biochem. 132(August):120–127. doi: 10.1016/j.plaphy.2018.08.037
  • Rehman A, Farooq M, Asif M, Ozturk L. 2019. Supra-optimal growth temperature exacerbates adverse effects of low Zn supply in wheat. J Plant Nutr Soil Sci. 182(4):656–666. doi: 10.1002/jpln.201800654
  • Rehman A, Farooq M, Naveed M, Nawaz A, Shahzad B. 2018. Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. Eur J Agron. 94:98–107. doi: 10.1016/j.eja.2018.01.017
  • Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-Ur-Rehman M, Farid M, Abbas F. 2017. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater. 322:2–16. doi: 10.1016/j.jhazmat.2016.05.061
  • Rossi L, Hallman LM, Adams SN, Ac-Pangan WO. 2020. Impact of a soil conditioner integrated into fertilization scheme on orange and lemon seedling physiological performances. Plants. 9(7):812. doi: 10.3390/plants9070812
  • Sabir S, Arshad M, Chaudhari SK. 2014. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J. 2014:1–8. doi: 10.1155/2014/925494
  • Sadeghzadeh B. 2013. A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr. 13(4):907–927. doi: 10.4067/S0718-95162013005000072
  • Santos AJM, Backes C, Rodrigues LM, Teodoro AG, de Godoy LJG, Tomazello DA, Campos LFC, Ribon AA, Lopes TA, Boas RLV. 2020. Chemical characteristics of soil after application of tannery sludge as fertilizer in the sugarcane plant crop. Aust J Crop Sci. 14(4):641–648. doi: 10.21475/ajcs.20.14.04.p2234
  • Santos EF, Pongrac P, Reis AR, Rabêlo FHS, Azevedo RA, White PJ, Lavres J. 2021. Unravelling homeostasis effects of phosphorus and zinc nutrition by leaf photochemistry and metabolic adjustment in cotton plants. Sci Rep. 11(1):1–14. doi: 10.1038/s41598-021-93396-1
  • Schöttler MA, Thiele W, Belkius K, Bergner SV, Flügel C, Wittenberg G, Agrawal S, Stegemann S, Ruf S, Bock R. 2017. The plastid-encoded PsaI subunit stabilizes photosystem i during leaf senescence in tobacco. J Exp Bot. 68(5):1137–1155. doi: 10.1093/jxb/erx009
  • Sharma SS, Schat H, Vooijs R. 1998. In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry. 49(6):1531–1535. doi: 10.1016/S0031-9422(98)00282-9
  • Singh A, Prasad SM, Singh S. 2018. Impact of nano ZnO on metabolic attributes and fluorescence kinetics of rice seedlings. Environ Nanotechnol Monit Manag. 9(2017):42–49. doi: 10.1016/j.enmm.2017.11.006
  • Stateras D, Moustakas NK. 2017. Seasonal changes of macro- and micro-nutrients concentration in olive leaves. J Plant Nutr. 41(2):186–196. doi: 10.1080/01904167.2017.1383421
  • Sturikova H, Krystofova O, Huska D, Adam V. 2018. Zinc, zinc nanoparticles and plants. J Hazard Mater. 349:101–110. doi: 10.1016/j.jhazmat.2018.01.040
  • Subba P, Mukhopadhyay M, Mahato SK, Bhutia KD, Mondal TK, Ghosh SK. 2014. Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings. Physiol Mol Biol Plants. 20(4):461–473. doi: 10.1007/s12298-014-0254-2
  • Sun L, Song F, Guo J, Zhu X, Liu S, Liu F, Li X. 2020. Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize. Int J Mol Sci. 21(3):1–18. doi: 10.3390/ijms21030782
  • Szopiński M, Sitko K, Gieroń Ż, Rusinowski S, Corso M, Hermans C, Verbruggen N, Małkowski E. 2019. Toxic effects of cd and zn on the photosynthetic apparatus of the Arabidopsis halleri and Arabidopsis arenosa pseudo-metallophytes. Front Plant Sci. 10(June):1–13. doi: 10.3389/fpls.2019.00748
  • Taheri M, Qarache HA, Qarache AA, Yoosefi M. 2015. The effects of zinc-oxide nanoparticles on growth parameters of corn (SC704). STEM Fellowship J. 1(2):17–20. doi: 10.17975/sfj-2015-011
  • Tufail A, Li H, Naeem A, Li TX, Thiel G. 2017. Leaf cell membrane stability-based mechanisms of zinc nutrition in mitigating salinity stress in rice. Plant Biol. 20(2):338–345. doi: 10.1111/plb.12665
  • Xin X, Nepal J, Wright AL, Yang X, He Z. 2022. Carbon nanoparticles improve corn (Zea mays L.) growth and soil quality: comparison of foliar spray and soil drench application. J Clean Prod. 363:132630. doi: 10.1016/j.jclepro.2022.132630
  • Yu S, Zhang N, Kaiser E, Li G, An D, Sun Q, Chen W, Liu W, Luo W. 2021. Integrating chlorophyll fluorescence parameters into a crop model improves growth prediction under severe drought. Agric For Meteorol. 303:108367. doi: 10.1016/j.agrformet.2021.108367
  • Zhang R, Zhang H, Tu C, Hu X, Li L, Luo Y, Christie P. 2015. Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ Sci Pollut Res. 22(14):11109–11117. doi: 10.1007/s11356-015-4325-x
  • Zhu J, Li J, Shen Y, Liu S, Zeng N, Zhan X, White JC, Gardea-Torresdey J, Xing B. 2020. Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environ Sci Nano. 7(12):3901–3913. doi: 10.1039/D0EN00658K
  • Zhu J, Wang J, Zhan X, Li A, White JC, Gardea-Torresdey JL, Xing B. 2021. Role of charge and size in the translocation and distribution of zinc oxide particles in wheat cells. ACS Sustain Chem Eng. 9(34):11556–11564. doi: 10.1021/acssuschemeng.1c04080
  • Zou CQ, Zhang YQ, Rashid A, Ram H, Savasli E, Arisoy RZ, Ortiz-Monasterio I, Simunji S, Wang ZH, Sohu V, et al. 2012. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil. 361(1–2):119–130. doi: 10.1007/s11104-012-1369-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.