299
Views
0
CrossRef citations to date
0
Altmetric
Review

Raman spectroscopy of NiMo catalysts supported on solid oxides. A review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ellis, L. D.; Rorrer, N. A.; Sullivan, K. P.; Otto, M.; McGeehan, J. E.; Román-Leshkov, Y.; Wierckx, N.; Beckham, G. T. Chemical and Biological Catalysis for Plastics Recycling and Upcycling. Nat. Catal. 2021, 4, 539–556. DOI: 10.1038/s41929-021-00648-4.
  • Védrine, J. C. Metal Oxides in Heterogeneous Oxidation Catalysis: State of the Art and Challenges for a More Sustainable World. ChemSusChem 2019, 12, 577–588. DOI: 10.1002/cssc.201802248
  • Védrine, J. C. Importance, Features and Uses of Metal Oxide Catalysts in Heterogeneous Catalysis. Chin. J. Catal. 2019, 40, 1627–1636. DOI: 10.1016/S1872-2067(18)63162-6.
  • Dey, S.; Dhal, G. C.; Mohan, D.; Prasad, R. Advances in Transition Metal Oxide Catalysts for Carbon Monoxide Oxidation: A Review. Adv. Compos. Hybrid Mater. 2019, 2, 626–656. DOI: 10.1007/s42114-019-00126-3.
  • Huo, J.; Tessonnier, J. P.; Shanks, B. H. Improving Hydrothermal Stability of Supported Metal Catalysts for Biomass Conversions: A Review. ACS Catal. 2021, 11, 5248–5270. DOI: 10.1021/acscatal.1c00197.
  • Mandari, V.; Devarai, S. K. Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: A Critical Review. Bioenergy Res. 2022, 15, 935–961. DOI: 10.1007/s12155-021-10333-w.
  • Lange, J. P. Performance Metrics for Sustainable Catalysis in Industry. Nat. Catal. 2021, 4, 186–192. DOI: 10.1038/s41929-021-00585-2.
  • Carlucci, C. An Overview on the Production of Biodiesel Enabled by Continuous Flow Methodologies. Catalysts 2022, 12, 717. DOI: 10.3390/catal12070717.
  • Prins, R.; Wang, A.; Li, X.; Sapountzi, F. Introduction to Heterogeneous Catalysis; World Scientific: London, EN, 2022; Vol. 2.
  • Franco, F.; Rettenmaier, C.; Jeon, H. S.; Cuenya, B. R. Transition Metal-Based Catalysts for the Electrochemical CO2 Reduction: From Atoms and Molecules to Nanostructured Materials. Chem. Soc. Rev. 2020, 49, 6884–6946. DOI: 10.1039/D0CS00835D.
  • Cai, G.; Ding, M.; Wu, Q.; Jiang, H. L. Encapsulating Soluble Active Species into Hollow Crystalline Porous Capsules beyond Integration of Homogeneous and Heterogeneous Catalysis. Natl. Sci. Rev. 2020, 7, 37–45. DOI: 10.1093/nsr/nwz147.
  • Wassel, A. R.; El-Naggar, M. E.; Shoueir, K. Recent Advances in Polymer/Metal/Metal Oxide Hybrid Nanostructures for Catalytic Applications: A Review. J. Environ. Chem. Eng. 2020, 8, 104175. DOI:10.1016/j.jece.2020.104175.
  • Mukhtar, A.; Saqib, S.; Lin, H.; Hassan Shah, M. U.; Ullah, S.; Younas, M.; Rezakazemi, M.; Ibrahim, M.; Mahmood, A.; Asif, S.; Bokhari, A. Current Status and Challenges in the Heterogeneous Catalysis for Biodiesel Production. Renew. Sust. Energ. Rev. 2022, 157, 112012. DOI: 10.1016/j.rser.2021.112012.
  • Din, I. U.; Nasir, Q.; Garba, M. D.; Alharthi, A. I.; Alotaibi, M. A.; Usman, M. A Review of Preparation Methods for Heterogeneous Catalysts. MROC 2022, 19, 92–110. DOI: 10.2174/1570193X18666210308151136.
  • Jambhulkar, D. K.; Ugwekar, R. P.; Bhanvase, B. A.; Barai, D. P. A Review on Solid Base Heterogeneous Catalysts: Preparation, Characterization and Applications. Chem. Eng. Commun. 2022, 209, 433–484. DOI: 10.1080/00986445.2020.1864623.
  • Murzin, D. Y. Kinetics of Heterogeneous Single-Site Catalysis. ChemCatChem 2023, 15, e202201082. DOI: 10.1002/cctc.202201082.
  • Morales-García, Á.; Viñes, F.; Gomes, J. R.; Illas, F. Concepts, Models, and Methods in Computational Heterogeneous Catalysis Illustrated through CO2 Conversion. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1530. DOI: 10.1002/wcms.1530.
  • Vogt, C.; Weckhuysen, B. M. The Concept of Active Site in Heterogeneous Catalysis. Nat. Rev. Chem. 2022, 6, 89–111. DOI: 10.1038/s41570-021-00340-y.
  • Ueda, W. Overview of Crystalline Metal Oxide Catalysts. In Crystalline Metal Oxide Catalysts; Ueda, W., Ed.; Springer Nature Singapore: Singapore, SG, 2022; pp 1–51.
  • Yu, K.; Lou, L. L.; Liu, S.; Zhou, W. Asymmetric Oxygen Vacancies: The Intrinsic Redox Active Sites in Metal Oxide Catalysts. Adv Sci (Weinh) 2020, 7, 1901970. DOI: 10.1002/advs.201901970.
  • Váchová, V.; Toullis, D.; Straka, P.; Šimáček, P.; Staš, M.; Gdovin, A.; Beňo, Z.; Blažek, J. Composition and Properties of Rapeseed Oil Hydrotreating Products over CoMo/Al2O3 and NiMo/Al2O3 Catalysts. Energy Fuels 2020, 34, 9609–9619. DOI: 10.1021/acs.energyfuels.0c01112.
  • Lebeau, B.; Bonne, M.; Comparot, J. D.; Rousseau, J.; Michelin, L.; Blin, J. L.; Brunet, S. HDS of 4, 6-Dimethyldibenzothiophene over CoMoS Supported Mesoporous SiO2-TiO2 Materials. Catal. Today 2020, 357, 675–683. DOI: 10.1016/j.cattod.2019.02.052.
  • Han, W.; Nie, H.; Long, X.; Li, D. A Study on the Role of Ni Atoms in the HDN Activity of NiMoS2/Al2O3 Catalyst. Appl. Catal. A Gen. 2020, 593, 117458. DOI: 10.1016/j.apcata.2020.117458.
  • Liang, J.; Wu, M.; Zhang, Z.; Wang, H.; Huang, T.; Zhao, L.; Liu, Y.; Liu, C. Constructing a Superior Co–Mo HDS Catalyst from a Crystalline Precursor Separated from the Impregnating Solution. Catal. Sci. Technol. 2022, 12, 2278–2288. DOI: 10.1016/j.cej.2020.125167.
  • Saleh, T. A.; Al-Hammadi, S. A. A Novel Catalyst of Nickel-Loaded Graphene Decorated on Molybdenum-Alumina for the HDS of Liquid Fuels. Chem. Eng. J. 2021, 406, 125167. DOI: 10.1016/j.cej.2020.125167.
  • Bello, S. S.; Wang, C.; Zhang, M.; Gao, H.; Han, Z.; Shi, L.; Su, F.; Xu, G. Review on the Reaction Mechanism of Hydrodesulfurization and Hydrodenitrogenation in Heavy Oil Upgrading. Energy Fuels 2021, 35, 10998–11016. DOI: 10.1021/acs.energyfuels.1c01015.
  • Nguyen, T. H.; Nguyen, Q. A.; Cao, A. N. T.; Ernest, T.; Nguyen, T. B.; Pham, P. T.; Nguyen, T. M. Hydrodemetallization of Heavy Oil: Recent Progress, Challenge, and Future Prospects. J. Pet. Sci. Eng. 2022, 216, 110762. DOI: 10.1016/j.petrol.2022.110762.
  • Haider, M. S.; Castello, D.; Rosendahl, L. A. The Art of Smooth Continuous Hydroprocessing of Biocrudes Obtained from Hydrothermal Liquefaction: Hydrodemetallization and Propensity for Coke Formation. Energy Fuels 2021, 35, 10611–10622. DOI: 10.1021/acs.energyfuels.1c01228.
  • Rana, M. S.; AlHumaidan, F. S.; Navvamani, R. Synthesis of Large Pore Carbon-Alumina Supported Catalysts for Hydrodemetallization. Catal. Today 2020, 353, 204–212. DOI: 10.1016/j.cattod.2019.07.009.
  • Yue, X.; Zhang, L.; Sun, L.; Gao, S.; Gao, W.; Cheng, X.; Shang, N.; Gao, Y.; Wang, C. Highly Efficient Hydrodeoxygenation of Lignin-Derivatives over Ni-Based Catalyst. Appl. Catal. B Environ. 2021, 293, 120243. DOI: 10.1016/j.apcatb.2021.120243.
  • Yan, P.; Kennedy, E.; Stockenhuber, M. Natural Zeolite Supported Ni Catalysts for Hydrodeoxygenation of Anisole. Green Chem. 2021, 23, 4673–4684. DOI: 10.1039/D0GC04377J.
  • Xu, J.; Zhu, P.; El Azab, I. H.; Bin Xu, B.; Guo, Z.; Elnaggar, A. Y.; Mersal, G. A.; Liu, X.; Zhi, Y.; Lin, Z.; et al. An Efficient Bifunctional Ni-Nb2O5 Nanocatalysts for the Hydrodeoxygenation of Anisole. Chin. J. Chem. Eng. 2022, 49, 187–197. DOI: 10.1016/j.cjche.2022.07.009.
  • Wu, K.; Li, X.; Wang, W.; Huang, Y.; Jiang, Q.; Li, W.; Chen, Y.; Yang, Y.; Li, C. Creating Edge Sites within the Basal Plane of a MoS2 Catalyst for Substantially Enhanced Hydrodeoxygenation Activity. ACS Catal. 2022, 12, 8–17. DOI: 10.1021/acscatal.1c03669.
  • Diao, X.; Ji, N.; Li, X.; Rong, Y.; Zhao, Y.; Lu, X.; Song, C.; Liu, C.; Chen, G.; Ma, L.; et al. Fabricating High-Temperature Stable Mo-Co9S8/Al2O3 Catalyst for Selective Hydrodeoxygenation of Lignin to Arenes. Appl. Catal. B Environ. 2022, 305, 121067. DOI: 10.1016/j.apcatb.2022.121067.
  • Patel, U.; Parmar, B.; Patel, P.; Dadhania, A.; Suresh, E. The Synthesis and Characterization of Zn (II)/Cd (II) Based MOFs by a Mixed Ligand Strategy: A Zn (II) MOF as a Dual Functional Material for Reversible Dye Adsorption and as a Heterogeneous Catalyst for the Biginelli Reaction. Mater. Chem. Front. 2021, 5, 304–314. DOI: 10.1039/D0QM00611D.
  • Liu, Z.; Han, W.; Hu, D.; Sun, S.; Hu, A.; Wang, Z.; Jia, Y.; Zhao, X.; Yang, Q. Effects of Ni–Al2O3 Interaction on NiMo/Al2O3 Hydrodesulfurization Catalysts. J. Catal. 2020, 387, 62–72. DOI: 10.1016/j.jcat.2020.04.008.
  • Muhammad, Y.; Rahman, A. U.; Rashid, H. U.; Sahibzada, M.; Subhan, S.; Tong, Z. Hydrodesulfurization of Dibenzothiophene Using Pd-Promoted Co–Mo/Al2O3 and Ni–Mo/Al2O3 Catalysts Coupled with Ionic Liquids at Ambient Operating Conditions. RSC Adv 2019, 9, 10371–10385. DOI: 10.1039/C9RA00095J.
  • Palcheva, R.; Kaluža, L.; Moravčík, J.; Tyuliev, G.; Dimitrov, L.; Jiratova, K.; Avdeev, G.; Tenchev, K.; Spojakina, A. NiMo Catalysts Supported on Al-Based Mixed Oxide Prepared by Hydrothermal Method: Effect of Zn/Al Ratio and Addition of Silica on HDS Activity. Catal. Lett. 2020, 150, 3276–3286. DOI: 10.1007/s10562-020-03232-w.
  • Potter, M. E.; Light, M. E.; Irving, D. J. M.; Oakley, A. E.; Chapman, S.; Chater, P.; Cutts, G.; Watts, A.; Wharmby, M.; Vandegehuchte, B. D.; et al. Exploring the Origins of Crystallisation Kinetics in Hierarchical Materials Using in Situ X-Ray Diffraction and Pair Distribution Function Analysis. Phys. Chem. Chem. Phys. 2020, 22, 18860–18867. DOI: 10.1039/D0CP00670J.
  • Xu, Z.; Wang, H.; Kang, H.; Zhao, L.; Liu, X.; Huang, W.; Zhou, Y.; Wei, Q. Effect of Organic Phosphorus Addition on the State of Active Metal Species and Catalytic Performance of NiW/Al2O3 Hydrodesulfurization Catalyst. Fuel 2023, 340, 127547. DOI: 10.1016/j.fuel.2023.127547.
  • Cao, Z.; Zhang, X.; Guo, R.; Ding, S.; Zheng, P.; Fan, J.; Mei, J.; Xu, C.; Duan, A. Synergistic Effect of Acidity and Active Phases for NiMo Catalysts on Dibenzothiophene Hydrodesulfurization Performance. J. Chem. Eng. 2020, 400, 125886. DOI: 10.1016/j.cej.2020.125886.
  • Lee, C. W.; Lin, P. Y.; Chen, B. H.; Kukushkin, R. G.; Yakovlev, V. A. Hydrodeoxygenation of Palmitic Acid over Zeolite-Supported Nickel Catalysts. Catal. Today 2021, 379, 124–131. DOI: 10.1016/j.cattod.2020.05.013.
  • Hu, W.; Zhang, H.; Wang, M.; Pu, J.; Rogers, K.; Wang, H.; Ng, S.; Xu, R. Hydro-Upgrading of Light Cycle Oil-Synthesis of NiMo/SiO2-Al2O3-TiO2 Porous Catalyst. J Porous Mater 2021, 28, 867–874. DOI: 10.1016/j.cattod.2020.05.013.
  • Wagenhofer, M. F.; Shi, H.; Gutiérrez, O. Y.; Jentys, A.; Lercher, J. A. Enhancing Hydrogenation Activity of Ni-Mo Sulfide Hydrodesulfurization Catalysts. Sci. Adv. 2020, 6, eaax5331. DOI: 10.1126/sciadv.aax5331.
  • Guerrero-Pérez, M. O.; Patience, G. S.; Bañares, M. A. Experimental Methods in Chemical Engineering: Raman Spectroscopy. Can. J. Chem. Eng. 2021, 99, 97–107. DOI: 10.1002/cjce.23884.
  • Hess, C. New Advances in Using Raman Spectroscopy for the Characterization of Catalysts and Catalytic Reactions. Chem. Soc. Rev. 2021, 50, 3519–3564. DOI: 10.1039/D0CS01059F.
  • Hu, D.; Li, H.-P.; Mei, J.-L.; Xiao, C.-K.; Wang, E.-H.; Chen, X.-Y.; Zhang, W.-X.; Duan, A.-J. The Effect of Chelating Agent on Hydrodesulfurization Reaction of Ordered Mesoporous Alumina Supported NiMo Catalysts. Pet. Sci. 2022, 19, 321–328. DOI: 10.1016/j.petsci.2021.11.005.
  • Nikiforov, A. I.; Popov, A. G.; Chesnokov, E. A.; Ivanova, I. I. Promoting Effect of MoO3/Al2O3 Catalysts Fluorination on Their Reactivity in Propylene Metathesis. J. Catal. 2022, 415, 58–62. DOI: 10.1016/j.jcat.2022.09.024.
  • Saraeian, A.; Burkhow, S. J.; Jing, D.; Smith, E. A.; Shanks, B. H. Catalyst Property Effects on Product Distribution during the Hydrodeoxygenation of Lignin Pyrolysis Vapors over MoO3/γ-Al2O3. ACS Sustain. Chem. Eng. 2021, 9, 6685–6696. DOI: 10.1021/acssuschemeng.1c00295.
  • Mestl, G.; Srinivasan, T. K. K. Raman Spectroscopy of Monolayer-Type Catalysts: Supported Molybdenum Oxides. Catal. Rev. Sci. Eng. 1998, 40, 451–570. DOI: 10.1080/01614949808007114.
  • Zhang, M. H.; Fan, J. Y.; Chi, K.; Duan, A. J.; Zhao, Z.; Meng, X. L.; Zhang, H. L. Synthesis, Characterization, and Catalytic Performance of NiMo Catalysts Supported on Different Crystal Alumina Materials in the Hydrodesulfurization of Diesel. Fuel Process. Technol. 2017, 156, 446–453. DOI: 10.1016/j.fuproc.2016.10.007.
  • Vázquez-Garrido, I.; López-Benítez, A.; Berhault, G.; Guevara-Lara, A. Effect of Support on the Acidity of NiMo/Al2O3-MgO and NiMo/TiO2-Al2O3 Catalysts and on the Resulting Competitive Hydrodesulfurization/Hydrodenitrogenation Reactions. Fuel 2019, 236, 55–64. DOI: 10.1016/j.fuel.2018.08.053.
  • López-Benítez, A.; Berhault, G.; Guevara-Lara, A. NiMo Catalysts Supported on Mn-Al2O3 for Dibenzothiophene Hydrodesulfurization Application. Appl. Catal. B Environ. 2017, 213, 28–41. DOI: 10.1016/j.apcatb.2017.04.058.
  • Wang, G.; Zhao, Z.; Zhou, W.; Chen, Z.; Zhou, A.; Zhang, Y.; Yang, X.; Yao, F. Role of the Solvent Evaporating Temperature on the NiMo/TiO2-Al2O3 Catalyst and the Hydrodesulfurization Performance for 4, 6-Dimenthyldibenzothiophehe. Chem. Eng. J. Adv. 2022, 11, 100319. DOI: 10.1016/j.ceja.2022.100319.
  • Guevara-Lara, A.; Bacaud, R.; Vrinat, M. Highly Active NiMo/TiO2–Al2O3 Catalysts: Influence of the Preparation and the Activation Conditions on the Catalytic Activity. Appl. Catal. A Gen. 2007, 328, 99–108. DOI: 10.1016/j.apcata.2007.05.028.
  • Vázquez-Garrido, I.; López-Benítez, A.; Guevara-Lara, A.; Berhault, G. Synthesis of NiMo Catalysts Supported on Mn-Al2O3 for Obtaining Green Diesel from Waste Soybean Oil. Catal. Today 2021, 365, 327–340. DOI: 10.1016/j.cattod.2020.06.001.
  • Salomatina, A. A.; Nadeina, K. A.; Klimov, O. V.; Danilova, I. G.; Gerasimov, E. Y.; Prosvirin, I. P.; Pakharukova, V. P.; Chesalov, Y. A.; Noskov, A. S. Influence of Ni/Mo Ratio on Structure Formation of Ni–Mo Complex Compounds in NiMo/Al2O3 Catalysts for Selective Diene Hydrogenation. Energy Fuels 2022, 36, 15088–15099. DOI: 10.1021/acs.energyfuels.2c02940.
  • Klimov, O. V.; Nadeina, K. A.; Budukva, S. V.; Avdeenko, E. A.; Cherepanova, S. V.; Chesalov, Y.; Gerasimov, E.; Prosvirin, I. P.; Noskov, A. S. Investigation of the Regeneration of NiMoP/Al2O3 Hydrotreating Catalysts. Appl. Catal. A Gen. 2022, 630, 118447. DOI: 10.1016/j.apcata.2021.118447.
  • Lima, R. W.; Hewer, T. L.; Alves, R. M.; Schmal, M. Surface Analyses of Adsorbed and Deposited Species on the Ni-Mo Catalysts Surfaces after Guaiacol HDO. Influence of the Alumina and SBA-15 Supports. Mol. Catal. 2021, 511, 111724. DOI: 10.1016/j.mcat.2021.111724.
  • Xavier, D.; George, A.; Loureiro, F. J.; Rajesh, S. Electrochemical Properties of Double Molybdate LiSm(MoO4)2 Ceramics with Ultra-Low Sintering Temperature. Electrochim. Acta 2023, 452, 142317. DOI: 10.1016/j.electacta.2023.142317.
  • Ptak, M.; Majchrowski, A.; Sieradzki, A.; Suszyńska, M.; Mączka, M. Crystal Growth, IR Specular Reflectance and Polarized Raman Studies of LiNa5Mo9O30 Polar Single Crystal. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 228, 117850. DOI: 10.1016/j.saa.2019.117850.
  • Bai, J.; Hsu, J.; Sandineni, P.; Kim, C. W.; Brow, R. K. The Structure and Properties of Cesium Loaded Mo-Fe-Phosphate Glasses. J. Non-Cryst. Solids 2019, 510, 121–129. DOI: 10.1016/j.jnoncrysol.2019.01.016.
  • Pandey, A.; Dhaka, A.; Kumari, C.; Kaushik, J.; Arora, A.; Dutta, S.; Dixit, A.; Raman, R. RF Sputtered MoO3 Thin Film on Si (100) for Gas Sensing Applications. Def. Sci. J. 2020, 70, 505–510. DOI: 10.14429/dsj.70.16342.
  • Damjanović, V.; Pisk, J.; Kuzman, D.; Agustin, D.; Vrdoljak, V.; Stilinović, V.; Cindrić, M. The Synthesis, Structure and Catalytic Properties of the [Mo7O24 (μ-Mo8O26) Mo7O24]16- Anion Formed. via Two Intermediate Heptamolybdates [Co(en)3]2[NaMo7O24]Cl·nH2O and (H3O)[Co(en)3]2[Mo7O24]Cl·9H2O. Dalton Trans. 2019, 48, 9974–9983. DOI: 10.1039/C9DT01625B.
  • Jayasree, A. S.; Rahulan, K. M.; Sujatha, R. A.; Vinitha, G.; Flower, N. A. L. Influence of Ni Doping on the Structural and Third Order Nonlinear Optical Properties of ZnMoO4 Nanostructures. Ceram. Int. 2022, 48, 29267–29273. DOI: 10.1016/j.ceramint.2022.05.217.
  • Kaluža, L.; Palcheva, R.; Jiratova, K.; Tyuliev, G.; Gulková, D.; Dimitrov, L.; Avdeev, G. Characterization and HDS Activity of Mo and NiMo Sulfided Catalyst Prepared by Thioglycolic Acid Assisted Hydrothermal Deposition Method. J. Alloys Compd. 2022, 903, 163925. DOI: 10.1016/j.jallcom.2022.163925.
  • Tillard, M.; Granier, D.; Daenens, L.; Reibel, C.; Armand, P. Crystal Structure, Raman Characterization, and Magnetic Properties of the Hydrate RbYb(MoO4)2, H2O. J. Solid State Chem. 2022, 309, 122953. DOI: 10.1016/j.jssc.2022.122953.
  • Moses Badlyan, N.; Pettinger, N.; Enderlein, N.; Gillen, R.; Chen, X.; Zhang, W.; Knirsch, K. C.; Hirsch, A.; Maultzsch, J. Oxidation and Phase Transition in Covalently Functionalized MoS2. Phys. Rev. B. 2022, 106, 104103. DOI: 10.1103/PhysRevB.106.104103.
  • Martins, I. C. B.; Al-Sabbagh, D.; Bentrup, U.; Marquardt, J.; Schmid, T.; Scoppola, E.; Kraus, W.; Stawski, T. M.; Guilherme Buzanich, A.; Yusenko, K. V.; et al. Formation Mechanism of a Nano-Ring of Bismuth Cations and Mono-Lacunary Keggin-Type Phosphomolybdate. Chemistry 2022, 28, e202200079. DOI: 10.1002/chem.202200079.
  • Guevara-Lara, A.; López-Benítez, A.; Berhault, G.; Melo-Banda, J. A.; Silva-Rodrigo, R. Addition of Cerium to Alumina-Supported NiMo Catalysts for Dibenzothiophene Hydrodesulfurization Application. Top Catal 2022, 65, 1286–1300. DOI: 10.1007/s11244-022-01682-7.
  • Balakrishna, A.; Chary, B. S.; Sekhar, K. C.; Shareefuddin.; M.; Samdani. Influence of BaTiO3 on Physical and Optical Studies of Na2B4O7–MoO3–TeO2 Glasses Reinforced with Vanadium Ions. Eur. Phys. J. Plus 2022, 137, 1–12. DOI: 10.1140/epjp/s13360-022-03123-6.
  • Yang, F.; Libretto, N. J.; Komarneni, M. R.; Zhou, W.; Miller, J. T.; Zhu, X.; Resasco, D. E. Enhancement of m-Cresol Hydrodeoxygenation Selectivity on Ni Catalysts by Surface Decoration of MoOx Species. ACS Catal. 2019, 9, 7791–7800. DOI: 10.1021/acscatal.9b01285.
  • Gao, X.; Chen, C.; Zhang, W.; Hong, Y.; Wang, C.; Wu, G. Sulfated TiO2 Supported Molybdenum-Based Catalysts for Transesterification of Jatropha Seed Oil: Effect of Molybdenum Species and Acidity Properties. Renew. Energy 2022, 191, 357–369. DOI: 10.1016/j.renene.2022.04.021.
  • Wang, X.; Du, P.; Chi, K.; Duan, A.; Xu, C.; Zhao, Z.; Chen, Z.; Zhang, H. Synthesis of NiMo Catalysts Supported on Mesoporous Silica FDU-12 with Different Morphologies and Their Catalytic Performance of DBT HDS. Catal. Today 2017, 291, 146–152. DOI: 10.1016/j.cattod.2016.10.035.
  • Vosooghi, N.; Askari, S.; Rashidzadeh, M.; Sadighi, S. Promotion of the Acidity and Textural Properties of NiMo/γ-Al2O3 Catalyst by Applying fFuorine, Boron and Phosphorus in Hydrodesulfurization of Diesel Fuel. J. Mol. Struct. 2022, 1270, 133911. DOI: 10.1016/j.molstruc.2022.133911.
  • Danilova, I. G.; Dik, P. P.; Sorokina, T. P.; Gabrienko, A. A.; Kazakov, M. O.; Paukshtis, E. A.; Doronin, V. P.; Klimov, O. V.; Noskov, A. S. Effect of Rare Earths on Acidity of High-Silica Ultrastable REY Zeolites and Catalytic Performance of NiMo/REY + Al2O3 Catalysts in Vacuum Gas Oil Hydrocracking. Microporous Mesoporous Mater. 2022, 329, 111547. DOI: 10.1016/j.micromeso.2021.111547.
  • Berhault, G. Metal Sulfides: Novel Synthesis Methods and Recent Developments. In New Materials for Catalytic Applications, Parvulescu, V. I.; Kemnitz, E., Eds.; Elsevier: Amsterdam, NL, 2016; pp 313–360. DOI: 10.1016/B978-0-444-63587-7.00010-X.
  • Dabros, T. M. H.; Gaur, A.; Pintos, D. G.; Sprenger, P.; Høj, M.; Hansen, T. W.; Studt, F.; Gabrielsen, J.; Grunwaldt, J.-D.; Jensen, A. D. Influence of H2O and H2S on the Composition, Activity, and Stability of Sulfided Mo, CoMo, and NiMo Supported on MgAl2O4 for Hydrodeoxygenation of Ethylene Glycol. Appl. Catal. A Gen. 2018, 551, 106–121. DOI: 10.1016/j.apcata.2017.12.008.
  • Romanova, T. S.; Nadeina, K. A.; Danilova, I. G.; Danilevich, V. V.; Pakharukova, V. P.; Gabrienko, A. A.; Glazneva, T. S.; Gerasimov, E.; Prosvirin, I. P.; Vatutina, Y.; et al. Modification of HDT Catalysts of FCC Feedstock by Adding Silica to the Kneading Paste of Alumina Support: Advantages and Disadvantages. Fuel 2022, 324, 124555. DOI: 10.1016/j.fuel.2022.124555.
  • Kunisada, N.; Choi, K. H.; Korai, Y.; Mochida, I.; Nakano, K. Novel Zeolite Based Support for NiMo Sulfide in Deep HDS of Gas Oil. App. Catal. A Gen. 2004, 269, 43–51. DOI: 10.1016/j.apcata.2004.03.051.
  • Puello-Polo, E.; Marquez, E.; Brito, J. L. One-Pot Synthesis of Nb-Modified Al2O3 Support for NiMo Hydrodesulfurization Catalysts. J. Sol-Gel. Sci. Technol. 2018, 88, 90–99. DOI: 10.1007/s10971-018-4792-x.
  • Trejo, F.; Rana, M. S.; Ancheyta, J. CoMo/MgO–Al2O3 Supported Catalysts: An Alternative Approach to Prepare HDS Catalysts. Catal. Today 2008, 130, 327–336. DOI: 10.1016/j.cattod.2007.10.105.
  • Cao, Z.; Duan, A.; Zhao, Z.; Li, J.; Wei, Y.; Jiang, G.; Liu, J. A. Simple Two-Step Method to Synthesize the Well-Ordered Mesoporous Composite Ti-FDU-12 and Its Application in the Hydrodesulfurization of DBT and 4, 6-DMDBT. J. Mater. Chem. A 2014, 2, 19738–19749. DOI: 10.1039/C4TA03691C.
  • García-Contreras, L. A.; Flores-Flores, J. O.; Arenas-Alatorre, J. Á.; Chávez-Carvayar, J. Á. Synthesis, Characterization and Study of the Structural Change of Nanobelts of TiO2 (H2Ti3O7) to Nanobelts with Anatase, Brookite and Rutile Phases. J. Alloys Compd. 2022, 923, 166236. DOI: 10.1016/j.jallcom.2022.166236.
  • Ledesma, B. C.; Martínez, M. L.; Gómez Costa, M. B.; Beltramone, A. R. Indole HDN Using Iridium Nanoparticles Supported on Titanium Nanotubes. Catal. Lett. 2022, 1–11. DOI: 10.1007/s10562-022-04221-x.
  • Ganiyu, S. A.; Alhooshani, K.; Ali, S. A. Single-Pot Synthesis of Ti-SBA-15-NiMo Hydrodesulfurization Catalysts: Role of Calcination Temperature on Dispersion and Activity. Appl. Catal. B Environ. 2017, 203, 428–441. DOI: 10.1016/j.apcatb.2016.10.052.
  • López-Benítez, A.; Berhault, G.; Guevara-Lara, A. Addition of Manganese to Alumina and Its Influence on the Formation of Supported NiMo Catalysts for Dibenzothiophene Hydrodesulfurization Application. J. Catal. 2016, 344, 59–76. DOI: 10.1016/j.jcat.2016.08.015.
  • Zhou, W.; Liu, M.; Zhou, Y.; Wei, Q.; Zhang, Q.; Ding, S.; Zhang, Y.; Yu, T.; You, Q. You, Q. 4, 6-Dimethyldibenzothiophene Hydrodesulfurization on Nickel-Modified USY-Supported NiMoS Catalysts: Effects of Modification Method. Energy Fuels 2017, 31, 7445–7455. DOI: 10.1021/acs.energyfuels.7b01113.
  • Yu, Q.; Zhang, L.; Guo, R.; Sun, J.; Fu, W.; Tang, T.; Tang, T. Catalytic Performance of CoMo Catalysts Supported on Mesoporous ZSM-5 Zeolite-Alumina Composites in the Hydrodesulfurization of 4, 6-Dimethyldibenzothiophene. Fuel Process. Technol. 2017, 159, 76–87. DOI: 10.1016/j.fuproc.2017.01.023.
  • Wei, Q.; Wen, S.; Tao, X.; Zhang, T.; Zhou, Y.; Chung, K.; Xu, C. Hydrodenitrogenation of Basic and Non-Basic Nitrogen-Containing Compounds in Coker Gas Oil. Fuel Proc. Technol. 2015, 129, 76–84. DOI: 10.1016/j.fuproc.2014.08.001.
  • Wang, Y.; Yin, C.; Zhao, X.; Liu, C. Synthesis of Bifunctional Highly-Loaded NiMoW Catalysts and Their Catalytic Performance of 4, 6-DMDBT HDS. Catal. Commun. 2017, 88, 13–17. DOI: 10.1016/j.catcom.2016.09.026.
  • Zhang, L.; Fu, W.; Yu, Q.; Tang, T.; Zhao, Y.; Zhao, H.; Li, Y. Ni2P Clusters on Zeolite Nanosheet Assemblies with High Activity and Good Stability in the Hydrodesulfurization of 4, 6-Dimethyldibenzothiophene. J. Catal. 2016, 338, 210–221. DOI: 10.1016/j.jcat.2016.02.029.
  • Ferraz, S. G.; Santos, B. M.; Zotin, F. M. Z.; Araujo, L. R. R.; Zotin, J. L. Influence of Support Acidity of NiMo Sulfide Catalysts for Hydrogenation and Hydrocracking of Tetralin and Its Reaction Intermediates. Ind. Eng. Chem. Res. 2015, 54, 2646–2656. DOI: 10.1021/ie504545p.
  • Jeon, M.-S.; Al-Mutairi, A.; Jung, H.-K.; Hong, I.-P.; An, J.-C.; Park, C.-I.; Kim, D.-W.; Jeon, Y.; Marafi, A. M.; Ma, X.; Park, J.-I. Molecular Characteristics of Light Cycle Oil Hydrodesulfurization over Silica–Alumina-Supported NiMo Catalysts. ACS Omega 2020, 5, 29746–29754. DOI: 10.1021/acsomega.0c03543.
  • Jiao, J.; Fu, J.; Wei, Y.; Zhao, Z.; Duan, A.; Xu, C.; Li, J.; Song, H.; Zheng, P.; Wang, X.; et al. Al-Modified Dendritic Mesoporous Silica Nanospheres-Supported NiMo Catalysts for the Hydrodesulfurization of Dibenzothiophene: Efficient Accessibility of Active Sites and Suitable Metal–Support Interaction. J. Catal. 2017, 356, 269–282. DOI: 10.1016/j.jcat.2017.10.003.
  • Shi, Y.; Wang, G.; Mei, J.; Xiao, C.; Hu, D.; Wang, A.; Song, Y.; Ni, Y.; Jiang, G.; Duan, A. The Influence of Pore Structure and Acidity on the Hydrodesulfurization of Dibenzothiophene over NiMo-Supported Catalysts. ACS Omega 2020, 5, 15576–15585. DOI: 10.1021/acsomega.0c01783.
  • Wang, B.; Chen, Z.; Jiang, T.; Yu, J.; Yang, H.; Duan, A.; Xu, C. Restrictive Diffusion and Hydrodesulfurization Reaction of Dibenzothiophenes over NiMo/SBA‐15 Catalysts. AlChE. J. 2022, 68, e17577. DOI: 10.1002/aic.17577.
  • Soltanali, S.; Mashayekhi, M.; Mohaddecy, S. R. S. Comprehensive Investigation of the Effect of Adding Phosphorus and/or Boron to NiMo/γ-Al2O3 Catalyst in Diesel Fuel Hydrotreating. Process Saf. Environ. Prot. 2020, 137, 273–281. DOI: 10.1016/j.psep.2020.02.033.
  • Tang, M.; Wang, W.; Zhou, L.; Zhang, Y.; Qin, Z.; Han, W.; Wang, J.; Ge, H.; Li, X. Reactive Adsorption Desulfurization of Thiophene over NiMo/ZnO, a New Adsorbent with High Desulfurization Performance and Sulfur Capacity at Moderate Temperature. Catal. Sci. Technol. 2019, 9, 6318–6326. DOI: 10.1039/C9CY01070J.
  • Badoga, S.;Sharma, R. V.;Dalai, A. K.;Adjaye, J. Hydrotreating of Heavy Gas Oil on Mesoporous Zirconia Supported Nimo Catalyst with EDTA. Fuel 2014, 128, 30–38. DOI: 10.1016/j.fuel.2014.02.056.
  • Chandra Mouli, K.; Mohanty, S.; Hu, Y.; Dalai, A.; Adjaye, J. Effect of Hetero Atom on Dispersion of NiMo Phase on M-SBA-15 (M = Zr, Ti, Ti-Zr). Catal. Today 2013, 207, 133–144. DOI: 10.1016/j.cattod.2012.07.010.
  • Ranga, C.; Lødeng, R.; Alexiadis, V. I.; Rajkhowa, T.; Bjørkan, H.; Chytil, S.; Svenum, I. H.; Walmsley, J.; Detavernier, C.; Poelman, H.; et al. Effect of Composition and Preparation of Supported MoO3 Catalysts for Anisole Hydrodeoxygenation. Chem. Eng. J. 2018, 335, 120–132. DOI: 10.1016/j.cej.2017.10.090.
  • Fan, X.; Liu, D.; Zhao, Z.; Li, J.; Liu, J. Influence of Ni/Mo Ratio on the Structure-Performance of Ordered Mesoporous Ni-Mo-O Catalysts for Oxidative Dehydrogenation of Propane. Catal. Today 2020, 339, 67–78. DOI: 10.1016/j.cattod.2019.02.036.
  • Solomon, G.; Landström, A.; Mazzaro, R.; Jugovac, M.; Moras, P.; Cattaruzza, E.; Morandi, V.; Concina, I.; Vomiero, A. NiMoO4@Co3O4 Core–Shell Nanorods: In Situ Catalyst Reconstruction toward High Efficiency Oxygen Evolution RGeaction. Adv. Energy Mater. 2021, 11, 2101324. DOI: 10.1002/aenm.202101324.
  • Dong, J. C.; Su, M.; Briega-Martos, V.; Li, L.; Le, J. B.; Radjenovic, P.; Xiao-Shun, Z.; Feliu, J. M.; Zhong-Qun, T.; Li, J. F. Direct in Situ Raman Spectroscopic Evidence of Oxygen Reduction Reaction Intermediates at High-Index Pt (Hkl) Surfaces. J. Am. Chem. Soc. 2020, 142, 715–719. DOI: 10.1021/jacs.9b12803.
  • Dürr, R. N.; Maltoni, P.; Tian, H.; Jousselme, B.; Hammarström, L.; Edvinsson, T. From NiMoO4 to γ-NiOOH: Detecting the Active Catalyst Phase by Time Resolved in Situ and Operando Raman Spectroscopy. ACS Nano 2021, 15, 13504–13515. DOI: 10.1021/acsnano.1c04126.
  • Zhu, Y.; El-Demellawi, J. K.; Yin, J.; Lopatin, S.; Lei, Y.; Liu, Z.; Miao, X.; Mohammed, O. F.; Alshareef, H. N. Unprecedented Surface Plasmon Modes in Monoclinic MoO2 Nanostructures. Adv. Mater. 2020, 32, 1908392. DOI: 10.1002/adma.201908392.
  • Nagyné-Kovács, T.; Studnicka, L.; Lukács, I. E.; László, K.; Pasierb, P.; Szilágyi, I. M.; Pokol, G. Hydrothermal Synthesis and Gas Sensing of Monoclinic MoO3 Nanosheets. Nanomater 2020, 10, 891. 10.3390/nano10050891.
  • Shetty, M.; Murugappan, K.; Green, W. H.; Román-Leshkov, Y. Structural Properties and Reactivity Trends of Molybdenum Oxide Catalysts Supported on Zirconia for the Hydrodeoxygenation of Anisole. ACS Sustain. Chem. Eng. 2017, 5, 5293–5301. DOI: 10.1021/acssuschemeng.7b00642.
  • Budukva, S. V.; Klimov, O. V.; Chesalov, Y. A.; Prosvirin, I. P.; Larina, T. V.; Noskov, A. S. Reactivation of CoMo/Al2O3 Hydrotreating Catalysts by Citric Acid. Catal. Lett. 2018, 148, 1525–1534. DOI: 10.1007/s10562-018-2365-9.
  • Li, Z.; Ma, J.; Zhang, B.; Song, C.; Wang, D. Crystal Phase-and Morphology-Controlled Synthesis of MoO3 Materials. CrystEngComm 2017, 19, 1479–1485. DOI: 10.1039/C6CE02437H.
  • Sun, P.; Teng, F.; Yang, Z.; Yang, X.; Zhai, S.; Liang, S.; Gu, W.; Hao, W.; Shi, S. Effect of the Phase Structure on the Catalytic Activity of MoO3 and Potential Application for Indoor Clearance. J. Mater. Chem. C 2020, 8, 2475–2482. DOI: 10.1039/C9TC05241K.
  • Kumar, P.; Maity, S. K.; Shee, D. Role of NiMo Alloy and Ni Species in the Performance of NiMo/Alumina Catalysts for Hydrodeoxygenation of Stearic Acid: A Kinetic Study. ACS Omega 2019, 4, 2833–2843. DOI: 10.1021/acsomega.8b03592.
  • Zhang, H.; Wang, Z.; Li, S.; Jiao, Y.; Wang, J.; Zhu, Q.; Li, X. Correlation between Structure, Acidity and Activity of Mo-Promoted Pt/ZrO2-TiO2-Al2O3 Catalysts for n-Decane Catalytic Cracking. Appl. Therm. Eng. 2017, 111, 811–818. DOI: 10.1016/j.applthermaleng.2016.10.006.
  • Nikulshina, M.; Kokliukhin, A.; Mozhaev, A.; Nikulshin, P. CoMo/Al2O3 Hydrotreating Catalysts Prepared from Single Co2Mo10-Heteropolyacid at Extremely High Metal Loading. Catal. Commun. 2019, 127, 51–57. DOI: 10.1016/j.catcom.2019.05.003.
  • Xiong, P.; Gao, X.-J.; Wang, W.-X.; Zhang, J.-F.; Song, F.-E.; Zhang, Q.-D.; Han, Y.-Z.; Tan, Y.-S. Effect of Calcination Temperature on the Structure and Performance of Molybdenum-Tin Catalyst for DME Oxidation. J. Fuel Chem. Technol. 2022, 50, 63–71. DOI: 10.1016/S1872-5813(21)60120-2.
  • Cervantes, J. M.; Huirache-Acuña, R.; de León, J. D.; Moyado, S. F.; Paraguay-Delgado, F.; Berhault, G.; Alonso-Núñez, G. CoNiMo/Al2O3 Sulfide Catalysts for Dibenzothiophene Hydrodesulfurization: Effect of the Addition of Small Amounts of Mickel. Microporous Mesoporous Mater. 2020, 309, 110574. DOI: 10.1016/j.micromeso.2020.110574.
  • Kwon, D. W.; Park, K. H.; Ha, H. P.; Hong, S. C. The Role of Molybdenum on the Enhanced Performance and SO2 Resistance of V/Mo-Ti Catalysts for NH3-SCR. Appl. Surf. Sci. 2019, 481, 1167–1177. DOI: 10.1016/j.apsusc.2019.03.118.
  • Xue, S.; Luo, Z.; Sun, H.; Zhu, W. Product Regulation and Catalyst Deactivation during Ex-Situ Catalytic Fast Pyrolysis of Biomass over Nickel-Molybdenum Bimetallic Modified Micro-Mesoporous Zeolites and Clays. Bioresour. Technol. 2022, 364, 128081. DOI: 10.1016/j.biortech.2022.128081.
  • Cai, Z.; Wang, Y.; Cao, Y.; Yu, P.; Ding, Y.; Ma, Y.; Zheng, Y.; Huang, K.; Jiang, L. Direct Production of Isomerized Biodiesel over MoS2/ZrPOx under Solvent-Free Conditions. Fuel 2023, 337, 127175. DOI: 10.1016/j.fuel.2022.127175.
  • Zaera, F. In-Situ and Operando Spectroscopies for the Characterization of Catalysts and of Mechanisms of Catalytic Reactions. J. Catal. 2021, 404, 900–910. DOI: 10.1016/j.jcat.2021.08.013.
  • Liu, Q.; Li, M. Y.; Shi, Y. M.; Liu, C. B.; Yu, Y. F.; Zhang, B. In Situ Structural Reconstruction of NiMo Alloy as a Versatile Organic Oxidation Electrode for Boosting Hydrogen Production. Rare Met. 2022, 41, 836–843. DOI: 10.1007/s12598-021-01824-y.
  • Ternero-Hidalgo, J. J.; Guerrero-Pérez, M. O.; Rodríguez-Mirasol, J.; Cordero, T.; Bañares, M. A.; Portela, R.; Bazin, P.; Clet, G.; Daturi, M. Operando Reactor-Cell with Simultaneous Transmission FTIR and Raman Characterization (IRRaman) for the Study of Gas-Phase Reactions with Solid Catalysts. Anal. Chem. 2020, 92, 5100–5106. DOI: 10.1021/acs.analchem.9b05473.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.