Publication Cover
Canadian Journal of Remote Sensing
Journal canadien de télédétection
Volume 49, 2023 - Issue 1
2,457
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Mapping Dominant Boreal Tree Species Groups by Combining Area-Based and Individual Tree Crown LiDAR Metrics with Sentinel-2 Data

Cartographie de peuplements d’espèces d’arbres boréales en combinant des mesures de données LiDAR régionales et à l’échelle de l’arbre avec des données de Sentinel-2

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Article: 2130742 | Received 08 Jun 2022, Accepted 25 Sep 2022, Published online: 13 Oct 2022

References

  • Achim, A., Moreau, G., Coops, N.C., Axelson, J.N., Barrette, J., Bédard, S., Byrne, K.E., et al. 2022. “The changing culture of silviculture.” Forestry: An International Journal of Forest Research, Vol. 95(No. 2): pp. 143–152. doi:10.1093/forestry/cpab047.
  • Astola, H., Häme, T., Sirro, L., Molinier, M., and Kilpi, J. 2019. “Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in Boreal region.” Remote Sensing of Environment, Vol. 223: pp. 257–273. doi:10.1016/j.rse.2019.01.019.
  • Axelsson, A., Lindberg, E., and Olsson, H. 2018. “Exploring multispectral ALS data for tree species classification.” Remote Sensing, Vol. 10(No. 3): pp. 183. doi:10.3390/rs10020183.
  • Bilyk, A., Pulkki, R., Shahi, C., and Larocque, G.R. 2021. “Development of the Ontario Forest Resources Inventory: A historical review.” Canadian Journal of Forest Research, Vol. 51(No. 2): pp. 198–209. doi:10.1139/cjfr-2020-0234.
  • Breidenbach, J., and Astrup, R. 2014. “The semi-individual tree crown approach.” In Forestry Applications of Airborne Laser Scanning. Managing Forest Ecosystems, 113–133. Dordrecht: Springer. doi:10.1007/978-94-017-8663-8_6.
  • Breidenbach, J., Naesset, E., Lien, V., Gobakken, T., and Solberg, S. 2010. “Prediction of Species Specific Forest Inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data.” Remote Sensing of Environment, Vol. 114(No. 4): pp. 911–924. doi:10.1016/j.rse.2009.12.004.
  • Breidenbach, J., Waser, L.T., Debella-Gilo, M., Schumacher, J., Rahlf, J., Hauglin, M., Puliti, S., and Astrup, R. 2021. “National mapping and estimation of forest area by dominant tree species using Sentinel-2 data.” Canadian Journal of Forest Research, Vol. 51(No. 3): pp. 365–379. doi:10.1139/cjfr-2020-0170.
  • Brown, R., Hartzell, P., and Glennie, C. 2020. “Evaluation of SPL100 single photon LiDAR data.” Remote Sensing, Vol. 12(No. 4): pp. 722. doi:10.3390/rs12040722.
  • Budei, B.C., St-Onge, B., Hopkinson, C., and Audet, F.A. 2018. “Identifying the genus or species of individual trees using a three-wavelength airborne LiDAR system.” Remote Sensing of Environment, Vol. 204: pp. 632–647. doi:10.1016/j.rse.2017.09.037.
  • Coops, N.C., Tompalski, P., Goodbody, T.R.H., Queinnec, M., Luther, J.E., Bolton, D.K., White, J.C., et al. 2021. “Modelling LiDAR-derived estimates of forest attributes over space and time: A review of approaches and future trends.” Remote Sensing of Environment, Vol. 260: pp. 112477. doi:10.1016/j.rse.2021.112477.
  • Coops, N.C., Wulder, M.A., Culvenor, D.S., and St-Onge, B. 2004. “Comparison of forest attributes extracted from fine spatial resolution multispectral and LiDAR data.” Canadian Journal of Remote Sensing, Vol. 30(No. 6): pp. 855–866. doi:10.5589/m04-045.
  • Dalponte, M., Ørka, H.O., Ene, L.T., Gobakken, T., and Naesset, E. 2014. “Tree crown delineation and tree species classification in Boreal forests using hyperspectral and ALS data.” Remote Sensing of Environment, Vol. 140: pp. 306–317. doi:10.1016/j.rse.2013.09.006.
  • Duncanson, L.I., Dubayah, R.O., Cook, B.D., Rosette, J., and Parker, G. 2015. “The importance of spatial detail: Assessing the utility of individual crown information and scaling approaches for LiDAR-based biomass density estimation.” Remote Sensing of Environment, Vol. 168: pp. 102–112. doi:10.1016/j.rse.2015.06.021.
  • Fassnacht, F.E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L.T., Straub, C., and Ghosh, A. 2016. “Review of studies on tree species classification from remotely sensed data.” Remote Sensing of Environment, Vol. 186: pp. 64–87. doi:10.1016/j.rse.2016.08.013.
  • Gamfeldt, L., Snäll, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P., Ruiz-Jaen, M.C., et al. 2013. “Higher levels of multiple ecosystem services are found in forests with more tree species.” Nature Communications, Vol. 4(No. 1): pp. 1–8. doi:10.1038/ncomms2328.
  • Gluckman, J. 2016. “Design of the processing chain for a high-altitude, airborne, single photon LiDAR mapping instrument.” Laser Radar Technology and Applications XXI (Vol. 9832), 20–28. Bellingham, Washington USA: SPIE. doi:10.1117/12.2219760.
  • Grabska, E., Hostert, P., Pflugmacher, D., and Ostapowicz, K. 2019. “Forest stand species mapping using the Sentinel-2 time series.” Remote Sensing, Vol. 11(No. 10): pp. 1197. doi:10.3390/rs11101197.
  • Harding, D. 2018. “Pulsed laser altimeter ranging techniques and implications for terrain mapping.” In Topographic Laser Ranging and Scanning, 2nd ed., 201–220. Boca Raton, FL: Taylor & Francis; CRC Press. doi:10.1201/9781315154381-5.
  • Hartzell, P., Dang, Z., Pan, Z., and Glennie, C. 2018. “Radiometric evaluation of an airborne single photon LiDAR sensor.” IEEE Geoscience and Remote Sensing Letters, Vol. 15(No. 9): pp. 1466–1470. doi:10.1109/LGRS.2018.2841811.
  • Hemmerling, J., Pflugmacher, D., and Hostert, P. 2021. “Mapping temperate forest tree species using dense Sentinel-2 time series.” Remote Sensing of Environment, Vol. 267: pp. 112743. doi:10.1016/j.rse.2021.112743.
  • Holmgren, J., and Persson, Å. 2004. “Identifying species of individual trees using airborne laser scanner.” Remote Sensing of Environment, Vol. 90(No. 4): pp. 415–423. doi:10.1016/S0034-4257(03)00140-8.
  • Holmgren, J., Persson, Å., and Söderman, U. 2008. “Species identification of individual trees by combining high resolution LiDAR data with multi-spectral images.” International Journal of Remote Sensing, Vol. 29(No. 5): pp. 1537–1552. doi:10.1080/01431160701736471.
  • Horler, D.N.H., Dockray, M., and Barber, J. 1983. “The red edge of plant leaf reflectance.” International Journal of Remote Sensing, Vol. 4(No. 2): pp. 273–288. doi:10.1080/01431168308948546.
  • Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A., and Laan, M.J. and Van Der, 2006. “Survival ensembles.” Biostatistics, Vol. 7(No. 3): pp. 355–373. doi:10.1093/biostatistics/kxj011.
  • Hovi, A., Raitio, P., and Rautiainen, M. 2017. “A spectral analysis of 25 Boreal tree species.” Silva Fennica, Vol. 51(No. 4): 7753. doi:10.14214/sf.7753.
  • Irwin, L., Coops, N.C., Queinnec, M., McCartney, G., and White, J.C. 2021. “Single photon LiDAR signal attenuation under Boreal forest conditions.” Remote Sensing Letters, Vol. 12(No. 10): pp. 1049–1060. doi:10.1080/2150704X.2021.1962575.
  • Kaartinen, H., Hyyppä, J., Yu, X., Vastaranta, M., Hyyppä, H., Kukko, A., Holopainen, M., et al. 2012. “An international comparison of individual tree detection and extraction using airborne laser scanning.” Remote Sensing, Vol. 4(No. 4): pp. 950–974. doi:10.3390/rs4040950.
  • Korhonen, L., Vauhkonen, J., Virolainen, A., Hovi, A., and Korpela, I. 2013. “Estimation of tree crown volume from airborne LiDAR data using computational geometry.” International Journal of Remote Sensing, Vol. 34(No. 20): pp. 7236–7248. doi:10.1080/01431161.2013.817715.
  • Kukkonen, M., Korhonen, L., Maltamo, M., Suvanto, A., and Packalen, P. 2018. “How much can airborne laser scanning based forest inventory by tree species benefit from auxiliary optical data?” International Journal of Applied Earth Observation and Geoinformation, Vol. 72: pp. 91–98. doi:10.1016/j.jag.2018.06.017.
  • Kukkonen, M., Maltamo, M., Korhonen, L., and Packalen, P. 2019. “Multispectral airborne LiDAR data in the prediction of Boreal tree species composition.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 57(No. 6): pp. 3462–3471. doi:10.1109/TGRS.2018.2885057.
  • Leckie, D.G., and Gillis, M.D. 1995. “Forest Inventory in Canada with emphasis on map production.” The Forestry Chronicle, Vol. 71(No. 1): pp. 74–88. doi:10.5558/tfc71074-1.
  • Lindberg, E., Holmgren, J., Olofsson, K., Wallerman, J., and Olsson, H. 2013. “Estimation of tree lists from airborne laser scanning using tree model clustering and K-MSN imputation.” Remote Sensing, Vol. 5(No. 4): pp. 1932–1955. doi:10.3390/rs5041932.
  • Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., and Gascon, F. 2017. “Sen2Cor for Sentinel-2.” October 3. doi:10.1117/12.2278218.
  • Maltamo, M., Packalen, P., and Kangas, A. 2021. “From comprehensive field inventories to remotely sensed wall-to-wall stand attribute data-a brief history of management inventories in the Nordic countries.” Canadian Journal of Forest Research, Vol. 51(No. 2): pp. 257–266. doi:10.1139/cjfr-2020-0322.
  • Maltamo, M., and Packalen, P. 2014. “Species-specific management inventory in Finland.” In Forestry Applications of Airborne Laser Scanning. Managing Forest Ecosystems, 241–252. Dordrecht: Springer. doi:10.1007/978-94-017-8663-8_12.
  • Michałowska, M., and Rapiński, J. 2021. “A review of tree species classification based on airborne LiDAR data and applied classifiers.” Remote Sensing, Vol. 13(No. 3): pp. 353–27. doi:10.3390/rs13030353.
  • Middleton, E.M., Chan, S.S., Rusin, R.I., and Mitchell, S.K. 1997. “Optical properties of black spruce and jack pine needles at BOREAS sites in Saskatchewan, Canada.” Canadian Journal of Remote Sensing, Vol. 23(No. 2): pp. 108–119. doi:10.1080/07038992.1997.10855193.
  • Næsset, E. 2002. “Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data.” Remote Sensing of Environment, Vol. 80(No. 1): pp. 88–99. doi:10.1016/S0034-4257(01)00290-5.
  • Ørka, H.O., Dalponte, M., Gobakken, T., Naesset, E., and Ene, L.T. 2013. “Characterizing forest species composition using multiple remote sensing data sources and inventory approaches.” Scandinavian Journal of Forest Research, Vol. 28(No. 7): pp. 677–688. doi:10.1080/02827581.2013.793386.
  • Parton, J., Vasiliauskas, S., Lucking, G., and Watt, W. 2006. Standard forest units for Northeastern Ontario Boreal Forests. Northeast Science & Information, NESI Technical Note TN021. Science & Information Branch, Northeast Science & Information, Ministry of Natural Resources.
  • Persson, M., Lindberg, E., and Reese, H. 2018. “Tree species classification with multi-temporal Sentinel-2 data.” Remote Sensing, Vol. 10(No. 11): pp. 1794. doi:10.3390/rs10111794.
  • Pinto, F., Rouillard, D., Sobze, J.M., and Ter-Mikaelian, M. 2007. “Validating tree species composition in forest resource inventory for Nipissing Forest, Ontario, Canada.” The Forestry Chronicle, Vol. 83(No. 2): pp. 247–251. doi:10.5558/tfc83247-2.
  • Plakman, V., Janssen, T., Brouwer, N., and Veraverbeke, S. 2020. “Mapping species at an individual-tree scale in a temperate forest, using Sentinel-2 images, airborne laser scanning data, and random forest classification.” Remote Sensing, Vol. 12(No. 22): pp. 3710. doi:10.3390/rs12223710.
  • Popescu, S.C., and Wynne, R.H. 2004. “Seeing the trees in the forest: Using LiDAR and multispectral data fusion with local filtering and variable window size for estimating tree height.” Photogrammetric Engineering & Remote Sensing, Vol. 70(No. 5): pp. 589–604. doi:10.14358/PERS.70.5.589.
  • Prieur, J.F., St-Onge, B., Fournier, R.A., Woods, M.E., Rana, P., and Kneeshaw, D. 2021. “A comparison of three airborne laser scanner types for species identification of individual trees.” Sensors, Vol. 22(No. 1): pp. 35. doi:10.3390/s22010035.
  • Queinnec, M., Coops, N.C., White, J.C., McCartney, G., and Sinclair, I. 2022. “Developing a forest inventory approach using airborne single photon LiDAR data: From ground plot selection to forest attribute prediction.” Forestry: An International Journal of Forest Research, Vol. 95(No. 3): pp. 347–362. doi:10.1093/forestry/cpab051.
  • R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna. https://www.r-project.org/.
  • Ranghetti, L., Boschetti, M., Nutini, F., and Busetto, L. 2020. “‘Sen2r’: An R toolbox for automatically downloading and preprocessing Sentinel-2 satellite data.” Computers & Geosciences, Vol. 139: pp. 104473. doi:10.1016/j.cageo.2020.104473.
  • Roussel, J.-R., Auty, D., Coops, N.C., Tompalski, P., Goodbody, T.R.H., Meador, A.S., Bourdon, J.-F., Boissieu, F. de, and Achim, A. 2020. “LidR: An R package for analysis of airborne laser scanning (ALS) data.” Remote Sensing of Environment, Vol. 251: pp. 112061. doi:10.1016/j.rse.2020.112061.
  • Shi, Y., Wang, T., Skidmore, A.K., and Heurich, M. 2018. “Important LiDAR metrics for discriminating forest tree species in Central Europe.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 137: pp. 163–174. doi:10.1016/j.isprsjprs.2018.02.002.
  • Strobl, C., Boulesteix, A.-L., Zeileis, A., and Hothorn, T. 2007. “Bias in random forest variable importance measures: Illustrations, sources and a solution.” BMC Bioinformatics, Vol. 8(No. 1): pp. 25–21. doi:10.1186/1471-2105-8-25.
  • Strobl, C., Boulesteix, A.L., Kneib, T., Augustin, T., and Zeileis, A. 2008. “Conditional variable importance for random forests.” BMC Bioinformatics, Vol. 9(No. 1): pp. 1–11. doi:10.1186/1471-2105-9-307.
  • Thompson, I.D., Maher, S.C., Rouillard, D.P., Fryxell, J.M., and Baker, J.A. 2007. “Accuracy of forest inventory mapping: Some implications for Boreal forest management.” Forest Ecology and Management, Vol. 252(No. 1–3): pp. 208–221. doi:10.1016/j.foreco.2007.06.033.
  • Tompalski, P., Coops, N.C., White, J.C., and Wulder, M.A. 2014. “Simulating the Impacts of Error in Species and Height upon Tree Volume Derived from Airborne Laser Scanning Data.” Forest Ecology and Management, Vol. 327: pp. 167–177. doi:10.1016/j.foreco.2014.05.011.
  • Tompalski, P., Coops, N.C., Marshall, P.L., White, J.C., Wulder, M.A., and Bailey, T. 2018. “Combining multi-date airborne laser scanning and digital aerial photogrammetric data for forest growth and yield modelling.” Remote Sensing, Vol. 10(No. 3): pp. 347. doi:10.3390/rs10020347.
  • Tompalski, P., White, J.C., Coops, N.C., Wulder, M.A., Leboeuf, A., Sinclair, I., Butson, C.R., and Lemonde, M.O. 2021. “Quantifying the precision of forest stand height and canopy cover estimates derived from air photo interpretation.” Forestry: An International Journal of Forest Research, Vol. 94(No. 5): pp. 611–629. doi:10.1093/forestry/cpab022.
  • Vastaranta, M., Kankare, V., Holopainen, M., Yu, X., Hyyppä, J., and Hyyppä, H. 2012. “Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 67: pp. 73–79. doi:10.1016/j.isprsjprs.2011.10.006.
  • Véga, C., Renaud, J.P., Durrieu, S., and Bouvier, M. 2016. “On the interest of penetration depth, canopy area and volume metrics to improve LiDAR-based models of forest parameters.” Remote Sensing of Environment, Vol. 175: pp. 32–42. doi:10.1016/j.rse.2015.12.039.
  • Wästlund, A., Holmgren, J., Lindberg, E., and Olsson, H. 2018. “Forest variable estimation using a high altitude single photon LiDAR system.” Remote Sensing, Vol. 10(No. 9): pp. 1422. doi:10.3390/rs10091422.
  • White, J.C., Coops, N.C., Wulder, M.A., Vastaranta, M., Hilker, T., and Tompalski, P. 2016. “Remote sensing technologies for enhancing forest inventories: A review.” Canadian Journal of Remote Sensing, Vol. 42(No. 5): pp. 619–641. doi:10.1080/07038992.2016.1207484.
  • White, J.C., Penner, M., and Woods, M. 2021. “Assessing single photon LiDAR for operational implementation of an enhanced forest inventory in diverse mixedwood forests.” The Forestry Chronicle, Vol. 97(No. 1): pp. 78–96. doi:10.5558/tfc2021-009.
  • White, J.C., Wulder, M.A., Varhola, A., Vastaranta, M., Coops, N.C., Cook, B.D., Pitt, D., and Woods, M. 2013. “A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach.” Forestry Chronicle, Vol. 89(No. 6): pp. 722–723. doi:10.5558/tfc2013-132.
  • Woods, M., Lim, K., and Treitz, P. 2008. “Predicting forest stand variables from LiDAR data in the Great Lakes – St. Lawrence Forest of Ontario.” Forestry Chronicle, Vol. 84(No. 6): pp. 827–839. doi:10.5558/tfc84827-6.
  • Woods, M., Pitt, D., Penner, M., Lim, K., Nesbitt, D., Etheridge, D., and Treitz, P. 2011. “Operational Implementation of a LiDAR Inventory in Boreal Ontario.” The Forestry Chronicle, Vol. 87(No. 4): pp. 512–528. doi:10.5558/tfc2011-050.
  • Wulder, M.A., Bater, C.W., Coops, N.C., Hilker, T., and White, J.C. 2008. “The role of LiDAR in sustainable forest management.” The Forestry Chronicle, Vol. 84(No. 6): pp. 807–826. doi:10.5558/tfc84807-6.
  • Wulder, M.A., Campbell, C., White, J.C., Flannigan, M., and Campbell, I.D. 2007. “National circumstances in the international circumboreal community.” The Forestry Chronicle, Vol. 83(No. 4): pp. 539–556. doi:10.5558/tfc83539-4.
  • Wulder, M.A., Coops, N.C., Hudak, A.T., Morsdorf, F., Nelson, R., Newnham, G., and Vastaranta, M. 2014. “Status and prospects for LiDAR remote sensing of forested ecosystems.” Canadian Journal of Remote Sensing, Vol. 39(No. S1): pp. S1–S5. doi:10.5589/M13-051.
  • Yu, X., Kukko, A., Kaartinen, H., Wang, Y., Liang, X., Matikainen, L., and Hyyppä, J. 2020. “Comparing features of single and multi-photon LiDAR in Boreal forests.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 168: pp. 268–276. doi:10.1016/j.isprsjprs.2020.08.013.
  • Zhen, Z., Quackenbush, L.J., and Zhang, L. 2016. “Trends in automatic individual tree crown detection and delineation—Evolution of LiDAR data.” Remote Sensing, Vol. 8(No. 4): pp. 333. doi:10.3390/rs8040333.
  • Zhu, G., Ju, W., Chen, J.M., and Liu, Y. 2014. “A novel moisture adjusted vegetation index (MAVI) to reduce background reflectance and topographical effects on LAI retrieval.” PLOS One, Vol. 9(No. 7): pp. e102560. doi:10.1371/journal.pone.0102560.