Publication Cover
Canadian Journal of Remote Sensing
Journal canadien de télédétection
Volume 49, 2023 - Issue 1
1,152
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing the Performance of Satellite-Based Models for Crop Yield Estimation in the Canadian Prairies

Évaluation de la performance des modèles satellitaires pour l’estimation du rendement des cultures dans les Prairies canadiennes

, , , &
Article: 2252926 | Received 09 Feb 2023, Accepted 22 Aug 2023, Published online: 05 Sep 2023

References

  • Azzari, G., Jain, M., and Lobell, D.B. 2017. “Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries.” Remote Sensing of Environment, Vol. 202: 129–141. doi:10.1016/j.rse.2017.04.014.
  • Basso, B., and Liu, L. 2019. “Seasonal crop yield forecast: Methods, applications, and accuracies.” Advances in Agronomy, 154: 201–255. doi:10.1016/bs.agron.2018.11.002.
  • Becker-Reshef, I., Justice, C., Sullivan, M., Vermote, E., Tucker, C., Anyamba, A., Small, J., et al. 2010. “Monitoring global croplands with coarse resolution earth observations: The global agriculture monitoring (GLAM) project.” Remote Sensing, Vol. 2 (No. 6): 1589–1609. doi:10.3390/rs2061589.
  • Benami, E., Jin, Z., Carter, M.R., Ghosh, A., Hijmans, R.J., Hobbs, A., Kenduiywo, B., and Lobell, D.B. 2021. “Uniting remote sensing, crop modelling and economics for agricultural risk management.” Nature Reviews Earth & Environment, Vol. 2 (No. 2): 140–159. doi:10.1038/s43017-020-00122-y.
  • Beneke, C., Chartrand, R., Kontgis, C., and Rich, D. 2019. “Automated monitoring of small grains in the middle East and North Africa for food security early warning.” In Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI, 11149:62–72. SPIE. doi:10.1117/12.2532840.
  • Bokusheva, R., Kogan, F., Vitkovskaya, I., Conradt, S., and Batyrbayeva, M. 2016. “Satellite-based vegetation health indices as a criteria for insuring against drought-related yield losses.” Agricultural and Forest Meteorology, Vol. 220 (No. 10): 200–206. doi:10.1016/j.agrformet.2015.12.066.
  • Bolton, D.K., and Friedl, M.A. 2013. “Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics.” Agricultural and Forest Meteorology, Vol. 173: 74–84. doi:10.1016/j.agrformet.2013.01.007.
  • Bontemps, S., Arias, M., Cara, C., Dedieu, G., Guzzonato, E., Hagolle, O., Inglada, J., et al. 2015. “Building a data set over 12 globally distributed sites to support the development of agriculture monitoring applications with sentinel-2.” Remote Sensing, Vol. 7 (No. 12): 16062–16090. doi:10.3390/rs71215815.
  • Borgogno-Mondino, E., Sarvia, F., and Gomarasca, M. A. 2019. “Supporting Insurance Strategies in Agriculture by Remote Sensing: A Possible Approach at Regional Level.” In Computational Science and Its Applications – ICCSA 2019, edited by S. Misra, O. Gervasi, B. Murgante, E. Stankova, V. Korkhov, C. Torre, A.M.A.C. Rocha, D. Taniar, B.O. Apduhan, and E. Tarantino, 186–199. Cham: Springer International Publishing. doi:https://doi.org/10.1007/978-3-030-24305-0_15.
  • Brown, J.F., and Shahriar Pervez, M. 2014. “Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture.” Agricultural Systems, Vol. 127: 28–40. doi:10.1016/j.agsy.2014.01.004.
  • Burke, M., and Lobell, D.B. 2017. “Satellite-based assessment of yield variation and its determinants in smallholder African systems.” Proceedings of the National Academy of Sciences of the United States of America, Vol. 114 (No. 9): 2189–2194. doi:10.1073/pnas.1616919114.
  • Cavalaris, C., Megoudi, S., Maxouri, M., Anatolitis, K., Sifakis, M., Levizou, E., and Kyparissis, A. 2021. “Modeling of durum wheat yield based on sentinel-2 imagery.” Agronomy, Vol. 11 (No. 8): 1486. doi:10.3390/agronomy11081486.
  • Chipanshi, A., Zhang, Y., Kouadio, L., Newlands, N., Davidson, A., Hill, H., Warren, R., et al. 2015. “Evaluation of the integrated canadian crop yield forecaster (ICCYF) model for in-season prediction of crop yield across the canadian agricultural landscape.” Agricultural and Forest Meteorology, Vol. 206: 137–150. doi:10.1016/j.agrformet.2015.03.007.
  • Cicek, H., Sunohara, M., Wilkes, G., McNairn, H., Pick, F., Topp, E., and Lapen, D.R. 2010. “Using vegetation indices from satellite remote sensing to assess corn and soybean response to controlled tile drainage.” Agricultural Water Management, Vol. 98 (No. 2): 261–270. doi:10.1016/j.agwat.2010.08.019.
  • Condro, A., Setiawan, Y., Prasetyo, L., Pramulya, R., and Siahaan, L. 2020. “Retrieving the national main commodity maps in indonesia based on high-resolution remotely sensed data using cloud computing platform.” Land, Vol. 9 (No. 10): 377. doi:10.3390/land9100377.
  • Deines, J.M., Kendall, A.D., and Hyndman, D.W. 2017. “Annual irrigation dynamics in the U.S. northern high plains derived from landsat satellite data.” Geophysical Research Letters, Vol. 44 (No. 18): 9350–9360. doi:10.1002/2017GL074071.
  • Dong, T., Liu, J., Shang, J., Qian, B., Huffman, T., Zhang, Y., Champagne, C., and Daneshfar, B. 2016. “Assessing the impact of climate variability on cropland productivity in the Canadian prairies using time series MODIS FAPAR.” Remote Sensing, Vol. 8 (No. 4): 281. doi:10.3390/rs8040281.
  • Doraiswamy, P. C., Akhmedov, B., Beard, L., Stern, A., and Mueller, R. 2007. “Operational prediction of crop yields using modis data and products,” ISPRS Archives XXXVI-8/W48 Workshop Proceedings: Remote Sensing Support to Crop Yield Forecast and Area Estimates, 6. https://www.ars.usda.gov/ARSUserFiles/1430/isprs_agrifish_final.pdf
  • Forkuor, G., Conrad, C., Thiel, M., Zoungrana, B., and Tondoh, J. 2017. “Multiscale remote sensing to map the spatial distribution and extent of cropland in the sudanian savanna of West Africa.” Remote Sensing, Vol. 9 (No. 8): 839. doi:10.3390/rs9080839.
  • Franz, T.E., Pokal, S., Gibson, J.P., Zhou, Y., Gholizadeh, H., Tenorio, F.A., Rudnick, D., et al. 2020. “The role of topography, soil, and remotely sensed vegetation condition towards predicting crop yield.” Field Crops Research, Vol. 252: 107788. doi:10.1016/j.fcr.2020.107788.
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. 2017. “Google earth engine: Planetary-scale geospatial analysis for everyone.” Remote Sensing of Environment, Vol. 202: 18–27. doi:10.1016/j.rse.2017.06.031.
  • Ha, T., Shen, Y., Duddu, H., Johnson, E., and Shirtliffe, S.J. 2022. “Quantifying hail damage in crops using sentinel-2 imagery.” Remote Sensing, Vol. 14 (No. 4): 951. doi:10.3390/rs14040951.
  • Hunt, M.L., Blackburn, G.A., Carrasco, L., Redhead, J.W., and Rowland, C.S. 2019. “High resolution wheat yield mapping using sentinel-2.” Remote Sensing of Environment, Vol. 233: 111410. doi:10.1016/j.rse.2019.111410.
  • Jeong, J.H., Resop, J.P., Mueller, N.D., Fleisher, D.H., Yun, K., Butler, E.E., Timlin, D.J., et al. 2016. “Random forests for global and regional crop yield predictions.” PLOS One, Vol. 11 (No. 6): e0156571. doi:10.1371/journal.pone.0156571.
  • Johnson, D.M., Rosales, A., Mueller, R., Reynolds, C., Frantz, R., Anyamba, A., Pak, E., and Tucker, C. 2021. “USA crop yield estimation with MODIS NDVI: Are remotely sensed models better than simple trend analyses?” Remote Sensing, Vol. 13 (No. 21): 4227. doi:10.3390/rs13214227.
  • Karlson, M., Ostwald, M., Bayala, J., Bazié, H.R., Ouedraogo, A.S., Soro, B., Sanou, J., and Reese, H. 2020. “The potential of sentinel-2 for crop production estimation in a smallholder agroforestry landscape, Burkina Faso.” Frontiers in Environmental Science, Vol. 8: 85. doi:10.3389/fenvs.2020.00085.
  • Karthikeyan, L., Chawla, I., and Mishra, A.K. 2020. “A review of remote sensing applications in agriculture for food security: crop growth and yield, irrigation, and crop losses.” Journal of Hydrology, Vol. 586: 124905. doi:10.1016/j.jhydrol.2020.124905.
  • Kayad, A., Sozzi, M., Gatto, S., Marinello, F., and Pirotti, F. 2019. “Monitoring within-field variability of corn yield using sentinel-2 and machine learning techniques.” Remote Sensing, Vol. 11 (No. 23):pp. 2873. doi:10.3390/rs11232873.
  • Kölle, W., Buchholz, M., and Musshoff, O. 2022. “Do high-resolution satellite indices at field level reduce basis risk of satellite-based weather index insurance?” Agricultural Finance Review, Vol. 82 (No. 4): 616–640. doi:10.1108/AFR-12-2020-0177.
  • Kouadio, L., Newlands, N.K., Davidson, A., Zhang, Y., and Chipanshi, A. 2014. “Assessing the performance of MODIS NDVI and EVI for seasonal crop yield forecasting at the ecodistrict scale.” Remote Sensing, Vol. 6 (No. 10): 10193–10214. doi:10.3390/rs61010193.
  • Li, F., Miao, Y., Chen, X., Sun, Z., Stueve, K., and Yuan, F. 2022. “In-Season Prediction of Corn Grain Yield through PlanetScope and Sentinel-2 Images.” Agronomy, Vol. 12 ((No. 12):pp. 3176. doi:10.3390/agronomy12123176.
  • Liu, J., Huffman, T., Qian, B., Shang, J., Li, Q., Dong, T., Davidson, A., and Jing, Q. 2020. “Crop yield estimation in the canadian prairies using terra/MODIS-derived crop metrics.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 13: 2685–2697. doi:10.1109/JSTARS.2020.2984158.
  • Liu, L., Dong, Y., Huang, W., Du, X., Ren, B., Huang, L., Zheng, Q., and Ma, H. 2020. “A disease index for efficiently detecting wheat fusarium head blight using sentinel-2 multispectral imagery.” IEEE Access., Vol. 8: 52181–52191. doi:10.1109/ACCESS.2020.2980310.
  • Makaudze, E.M., and Miranda, M.J. 2010. “Catastrophic drought insurance based on the remotely sensed normalised difference vegetation index for smallholder farmers in Zimbabwe.” Agrekon, Vol. 49 (No. 4): 418–432. doi:10.1080/03031853.2010.52669.
  • Marszalek, M., Körner, M., and Schmidhalter, U. 2022. “Prediction of multi-year winter wheat yields at the field level with satellite and climatological data.” Computers and Electronics in Agriculture, Vol. 194: 106777. doi:10.1016/j.compag.2022.106777.
  • Masiza, W., Chirima, J.G., Hamandawana, H., Kalumba, A.M., and Magagula, H.B. 2022. “Do satellite data correlate with in situ rainfall and smallholder crop yields? Implications for crop insurance.” Sustainability, Vol. 14 (No. 3):pp. 1670. doi:10.3390/su14031670.
  • Möllmann, J., Buchholz, M., Kölle, W., and Musshoff, O. 2020. “Do remotely-sensed vegetation health indices explain credit risk in agricultural microfinance?” World Development, Vol. 127 (No. 10): 104771. doi:10.1016/j.worlddev.2019.104771.
  • Muskulus, M., and Verduyn-Lunel, S. 2011. “Wasserstein distances in the analysis of time series and dynamical systems.” Physica D: Nonlinear Phenomena, Vol. 240 (No. 1): 45–58. doi:10.1016/j.physd.2010.08.005.
  • Nazir, A., Ullah, S., Saqib, Z.A., Abbas, A., Ali, A., Iqbal, M.S., Hussain, K., Shakir, M., Shah, M., and Butt, M.U. 2021. “Estimation and forecasting of rice yield using phenology-based algorithm and linear regression model on sentinel-II satellite data.” Agriculture, Vol. 11 (No. 10): 1026. doi:10.3390/agriculture11101026.
  • Nguyen, L.H., Robinson, S., and Galpern, P. 2022. “Medium-resolution multispectral satellite imagery in precision agriculture: Mapping precision canola (Brassica Napus L.) yield using sentinel-2 time series.” Precision Agriculture, Vol. 23 (No. 3): 1051–1071. doi:10.1007/s11119-022-09874-7.
  • Nguy-Robertson, A., Gitelson, A., Peng, Y., Viña, A., Arkebauer, T., and Rundquist, D. 2012. “Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity.” Agronomy Journal, Vol. 104 (No. 5): 1336–1347. doi:10.2134/agronj2012.0065.
  • Pantaleoni, E., Engel, B.A., and Johannsen, C.J. 2007. “Identifying agricultural flood damage using landsat imagery.” Precision Agriculture, Vol. 8 (No. 1–2): 27–36. doi:10.1007/s11119-006-9026-5.
  • Pejak, B., Lugonja, P., Antić, A., Panić, M., Pandžić, M., Alexakis, E., Mavrepis, P., Zhou, N., Marko, O., and Crnojević, V. 2022. “Soya yield prediction on a within-field scale using machine learning models trained on sentinel-2 and soil data.” Remote Sensing, Vol. 14 (No. 9): 2256. doi:10.3390/rs14092256.
  • Potgieter, A.B., Zhao, Y., Zarco-Tejada, P.J., Chenu, K., Zhang, Y., Porker, K., Biddulph, B., et al. 2021. “Evolution and application of digital technologies to predict crop type and crop phenology in agriculture.” In Silico Plants, Vol. 3 (No. 1): diab017. doi:10.1093/insilicoplants/diab017.
  • Prasad, G., Reddy Vuyyuru, U., and Gupta, M.D. 2019. “Agriculture commodity arrival prediction using remote sensing data: Insights and beyond.” arXiv. doi:https://doi.org/10.48550/arXiv.1906.07573.
  • Prey, L., and Schmidhalter, U. 2019. “Temporal and spectral optimization of vegetation indices for estimating grain nitrogen uptake and late-seasonal nitrogen traits in wheat.” Sensors, Vol. 19 (No. 21): 4640. doi:10.3390/s19214640.
  • Qader, S.H., Dash, J., and Atkinson, P.M. 2018. “Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq.” The Science of the Total Environment, Vol. 613–614: 250–262. doi:10.1016/j.scitotenv.2017.09.057.
  • Sakamoto, T. 2020. “Incorporating environmental variables into a MODIS-based crop yield estimation method for United states corn and soybeans through the use of a random forest regression algorithm.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 160:208–228. doi:10.1016/j.isprsjprs.2019.12.012.
  • Salmon, J.M., Friedl, M.A., Frolking, S., Wisser, D., and Douglas, E.M. 2015. “Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data.” International Journal of Applied Earth Observation and Geoinformation, Vol. 38: 321–334. doi:10.1016/j.jag.2015.01.014.
  • Satir, O., and Berberoglu, S. 2016. “Crop yield prediction under soil salinity using satellite derived vegetation indices.” Field Crops Research, Vol. 192: 134–143. doi:10.1016/j.fcr.2016.04.028.
  • Segarra, J., Araus, J.L., and Kefauver, S.C. 2022. “Farming and earth observation: Sentinel-2 data to estimate within-field wheat grain yield.” International Journal of Applied Earth Observation and Geoinformation, Vol. 107: 102697. doi:10.1016/j.jag.2022.102697.
  • Shi, D., Shi, Y., Wu, Q., and Fang, R. 2020. “Multidimensional assessment of food provisioning ecosystem services using remote sensing and agricultural statistics.” Remote Sensing, Vol. 12 (No. 23): 3955. doi:10.3390/rs12233955.
  • Shirsath, P.B., Sehgal, V.K., and Aggarwal, P.K. 2020. “Downscaling regional crop yields to local scale using remote sensing.” Agriculture, Vol. 10 (No. 3): 58. doi:10.3390/agriculture10030058.
  • Sishodia, R.P., Ray, R.L., and Singh, S.K. 2020. “Applications of remote sensing in precision agriculture: A review.” Remote Sensing, Vol. 12 (No. 19): 3136. doi:10.3390/rs12193136.
  • Skakun, S., Vermote, E., Franch, B., Roger, J.-C., Kussul, N., Ju, J., and Masek, J. 2019. “Winter wheat yield assessment from landsat 8 and sentinel-2 data: Incorporating surface reflectance, through phenological fitting, into regression yield models.” Remote Sensing, Vol. 11 (No. 15): 1768. doi:10.3390/rs11151768.
  • Soriano-González, J., Angelats, E., Martínez-Eixarch, M., and Alcaraz, C. 2022. “Monitoring rice crop and yield estimation with sentinel-2 data.” Field Crops Research, Vol. 281: 108507. doi:10.1016/j.fcr.2022.108507.
  • Tadesse, M., Simane, B., Abera, W., Tamene, L., Ambaw, G., Recha, J.W., Mekonnen, K., Demeke, G., Nigussie, A., and Solomon, D. 2021. “The effect of climate-smart agriculture on soil fertility, crop yield, and soil carbon in southern ethiopia.” Sustainability, Vol. 13 (No. 8): 4515. doi:10.3390/su13084515.
  • Turvey, C.G., and Mclaurin, M.K. 2012. “Applicability of the normalized difference vegetation index (NDVI) in index-based crop insurance design.” Weather, Climate, and Society, Vol. 4 (No. 4): 271–284. doi:10.1175/WCAS-D-11-00059.1.
  • Ulfa, F., Orton, T.G., Dang, Y.P., and Menzies, N.W. 2022. “Developing and testing remote-sensing indices to represent within-field variation of wheat yields: Assessment of the variation explained by simple models.” Agronomy, Vol. 12 (No. 2): 384. doi:10.3390/agronomy12020384.
  • Wall, L., Larocque, D., and Léger, P.‐M. 2008. “The early explanatory power of NDVI in crop yield modelling.” International Journal of Remote Sensing, Vol. 29 (No. 8): 2211–2225. doi:10.1080/01431160701395252.
  • Weiss, M., Jacob, F., and Duveiller, G. 2020. “Remote sensing for agricultural applications: A meta-review.” Remote Sensing of Environment, Vol. 236: 111402. doi:10.1016/j.rse.2019.111402.
  • Yang, C. 2020. “Remote sensing and precision agriculture technologies for crop disease detection and management with a practical application example.” Engineering, Vol. 6 (No. 5): 528–532. doi:10.1016/j.eng.2019.10.015.
  • Zhao, Y., Potgieter, A.B., Zhang, M., Wu, B., and Hammer, G.L. 2020. “Predicting wheat yield at the field scale by combining high-resolution sentinel-2 satellite imagery and crop modelling.” Remote Sensing, Vol. 12 (No. 6): 1024. doi:10.3390/rs12061024.
  • Zheng, Q., Huang, W., Cui, X., Shi, Y., and Liu, L. 2018. “New spectral index for detecting wheat yellow rust using sentinel-2 multispectral imagery.” Sensors, Vol. 18 (No. 3): 868. doi:10.3390/s18030868.