Publication Cover
Canadian Journal of Remote Sensing
Journal canadien de télédétection
Volume 49, 2023 - Issue 1
761
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Melt Season Arctic Sea Ice Type Separability Using Fully and Compact Polarimetric C- and L-Band Synthetic Aperture Radar

Séparabilité des types de glace de mer arctique durant la saison de fonde à l’aide de radars à synthèse d’ouverture entièrement polarimétriques et compactes en bande C ou L

ORCID Icon, &
Article: 2271578 | Received 29 May 2023, Accepted 11 Oct 2023, Published online: 31 Oct 2023

References

  • Arkett, M., Flett, D., De Abreu, R., Clemente-Colon, P., Woods, J., and Melchior, B. 2008. “Evaluating ALOS/PALSAR for ice monitoring—what can L-band do for the North American Ice Service?” IEEE International Geoscience and Remote Sensing Symposium Proceedings, Boston, MA, USA, Vol. 5, pp. 188–191. doi:10.1109/IGARSS.2008.4780059.
  • Barber, D.G., Hanesiak, J.M., and Yackel, J.J. 2001. “Sea ice, RADARSAT-1 and arctic climate processes: A review and update.” Canadian Journal of Remote Sensing, Vol. 27(No. 1): pp. 51–61. doi:10.1080/07038992.2001.10854919.
  • Barber, D.G., and Nghiem, S.V. 1999. “The role of snow on the thermal dependence of microwave backscatter over sea ice.” Journal of Geophysical Research: Oceans, Vol. 104(No.C11): pp. 25789–25803. doi:10.1029/1999JC900181.
  • Canadian Ice Service. 2011. “Sea Ice Climatic Atlas: Northern Canadian Water 1981–2010.” Ottawa. https://www.ec.gc.ca/glaces-ice/default.asp?lang=En&n=4B35305B-1.
  • Casey, J.A., Howell, S.E.L., Tivy, A., and Haas, C. 2016. “Separability of sea ice types from wide Swath C- and L-band synthetic aperture radar imagery acquired during the melt season.” Remote Sensing of Environment, Vol. 174: pp. 314–328. doi:10.1016/j.rse.2015.12.021.
  • Charbonneau, F.T., Brisco, B., Raney, R.K., McNairn, H., Liu, C., Vachon, P.W., Shang, J., et al. 2010. “Compact polarimetry overview and applications assessment.” Canadian Journal of Remote Sensing, Vol. 36(No. sup2): pp. S298–S315. doi:10.5589/m10-062.
  • Cloude, S.R., Goodenough, D.G., and Chen, H. 2012. “Compact decomposition theory.” IEEE Geoscience and Remote Sensing Letters, Vol. 9(No. 1): pp. 28–32. doi:10.1109/LGRS.2011.2158983.
  • Dabboor, M., and Geldsetzer, T. 2014. “Towards sea ice classification using simulated RADARSAT constellation mission compact polarimetric SAR imagery.” Remote Sensing of Environment, Vol. 140: pp. 189–195. doi:10.1016/j.rse.2013.08.035.
  • Dabboor, M., Montpetit, B., Howell, S., and Haas, C. 2017. “Improving sea ice characterization in dry ice winter conditions using polarimetric parameters from C-and L-band SAR data.” Remote Sensing, Vol. 9(No. 12): pp. 1270. doi:10.3390/rs9121270.
  • Dabboor, M., Montpetit, B., and Howell, S. 2018. “Assessment of the high resolution SAR mode of the RADARSAT constellation mission for first year ice and multiyear ice characterization.” Remote Sensing, Vol. 10(No. 4): pp. 594. doi:10.3390/rs10040594.
  • Dierking, W., and Busche, T. 2006. “Sea ice monitoring by L-band SAR: An assessment based on literature and comparisons of JERS-1 and ERS-1 imagery.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44(No. 4): pp. 957–970. doi:10.1109/TGRS.2005.861745.
  • Dierking, W., and Dall, J. 2007. “Sea ice deformation state from synthetic aperture radar imagery—part I: Comparison of C- and L-band and different polarization.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 45(No. 11): pp. 3610–3622. doi:http://dx.doi.org/10.1109/TGRS.2007.903711.
  • Dubois-Fernandez, P.C., Souyris, J.C., Angelliaume, S., and Garestier, F. 2008. “The compact polarimetry alternative for spaceborne SAR at low frequency.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 46(No. 10): pp. 3208–3222. doi:10.1109/TGRS.2008.919143.
  • Early, D.S., and Long, D.G. 2001. “Image reconstruction and enhanced resolution imaging from irregular samples.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 39(No. 2): pp. 291–302. doi:10.1109/36.905237.
  • Eicken, H., Krouse, H.R., Kadko, D., and Perovich, D.K. 2002. “Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice.” Journal of Geophysical Research: Oceans, Vol. 107(No. C10): pp. 1–20. doi:10.1029/2000JC000583.
  • Eicken, H., Grenfell, T.C., Perovich, D.K., Richter-Menge, J.A., and Frey, K. 2004. “Hydraulic controls of summer Arctic pack Ice albedo.” Journal of Geophysical Research: Oceans, Vol. 109(No. C8): pp. 1–13. doi:10.1029/2003JC001989.
  • Espeseth, M.M., Brekke, C., and Johansson, A.M. 2017. “Assessment of RISAT-1 and Radarsat-2 for sea ice observations from a hybrid-polarity perspective.” Remote Sensing, Vol. 9(No. 11): pp. 1088. doi:10.3390/rs9111088.
  • Fors, A.S., Brekke, C., Doulgeris, A.P., Eltoft, T., Renner, A.H., and Gerland, S. 2016. “Late-summer sea ice segmentation with multi-polarisation SAR features in C and X band.” The Cryosphere, Vol. 10(No. 1): pp. 401–415. doi:10.5194/tc-10-401-2016.
  • Geldsetzer, T., Arkett, M., Zagon, T., Charbonneau, F., Yackel, J.J., and Scharien, R.K. 2015. “All-season compact-polarimetry C-band SAR observations of sea ice.” Canadian Journal of Remote Sensing, Vol. 41(No. 5): pp. 485–504. doi:10.1080/07038992.2015.1120661.
  • Gill, J.P., and Yackel, J.J. 2012. “Evaluation of C-band SAR polarimetric parameters for discrimination of first-year sea ice types.” Canadian Journal of Remote Sensing, Vol. 38(No. 3): pp. 306–323. doi:10.5589/m12-025.
  • Haas, C., Lobach, J., Hendricks, S., Rabenstein, L., and Pfaffling, A. 2009. “Helicopter-borne measurements of sea ice thickness, using a small and lightweight, digital EM system.” Journal of Applied Geophysics, Vol. 67(No. 3): pp. 234–241. doi:10.1016/j.jappgeo.2008.05.005.
  • Haas, C., and Howell, S.E.L. 2015. “Ice thickness in the northwest passage.” Geophysical Research Letters, Vol. 42(No. 18): pp. 7673–7680. doi:10.1002/2015GL065704.
  • He, L., He, X., Hui, F., Ye, Y., Zhang, T., and Cheng, X. 2022. “Investigation of polarimetric decomposition for Arctic summer sea ice classification using Gaofen-3 fully polarimetric SAR data.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 15: pp. 3904–3915. doi:10.1109/JSTARS.2022.3170732.
  • Howell, S.E.L., Komarov, A.S., Dabboor, M., Montpetit, B., Brady, M., Scharien, R.K., Mahmud, M.S., Nandan, V., Geldsetzer, T., and Yackel, J.J. 2018. “Comparing L- and C-band synthetic aperture radar estimates of sea ice motion over different ice regimes.” Remote Sensing of Environment, Vol. 204: pp. 380–391. doi:10.1016/j.rse.2017.10.017.
  • Howell, S.E., Scharien, R.K., Landy, J., and Brady, M. 2020. “Spring melt pond fraction in the Canadian Arctic Archipelago predicted from RADARSAT-2.” The Cryosphere, Vol. 14(No. 12): pp. 4675–4686. doi:10.5194/tc-14-4675-2020.
  • Isoguchi, O., and Shimada, M. 2009. “An L-band ocean geophysical model function derived from PALSAR.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 47(No. 7): pp. 1925–1936. doi:10.1109/TGRS.2008.2010864.
  • Kwok, R., and Rothrock, D.A. 2009. “Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008.” Geophysical Research Letters, Vol. 36(No. 15): pp. n/a–n/a. doi:10.1029/2009GL039035.
  • Laxon, S.W., Giles, K.A., Ridout, A.L., Wingham, D.J., Willatt, R., Cullen, R., Kwok, R., et al. 2013. “CryoSat-2 estimates of Arctic sea ice thickness and volume.” Geophysical Research Letters, Vol. 40(No. 4): pp. 732–737. doi:10.1002/grl.50193.
  • Li, H., and Perrie, W. 2016. “Sea ice characterization and classification using hybrid polarimetry SAR.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9(No. 11): pp. 4998–5010. doi:10.1109/JSTARS.2016.2584542.
  • Livingstone, C., Onstott, R., Arsenault, L., Gray, A., and Singh, K. 1987. “Microwave sea-ice signatures near the onset of melt.” IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-25(No. 2): pp. 174–187. doi:10.1109/TGRS.1987.289816.
  • Mahmud, M.S., Nandan, V., Howell, S.E., Geldsetzer, T., and Yackel, J. 2020. “Seasonal evolution of L-band SAR backscatter over landfast Arctic sea ice.” Remote Sensing of Environment, Vol. 251: pp. 112049. doi:10.1016/j.rse.2020.112049.
  • Markus, T., Stroeve, J.C., and Miller, J. 2009. “Recent changes in arctic sea ice melt onset, freezeup, and melt season length.” Journal of Geophysical Research: Oceans, Vol. 114(No. C12): pp. 1–14. doi:10.1029/2009JC005436.
  • Maslanik, J.A., Fowler, C., Stroeve, J., Drobot, S., Zwally, J., Yi, D., and Emery, W. 2007. “A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss.” Geophysical Research Letters, Vol. 34(No. 24): pp. L24501. doi:10.1029/2007GL032043.
  • Meier, W.N., Hovelsrud, G.K., Van Oort, B.E.H., Key, J.R., Kovacs, K.M., Michel, C., Haas, C., et al. 2014. “Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity.” Reviews of Geophysics, Vol. 52(No. 3): pp. 185–217. doi:10.1002/2013RG000431.
  • Mortin, J., Howell, S.E.L., Wang, L., Derksen, C., Svensson, G., Graversen, R.G., and Schrøder, T.M. 2014. “Extending the QuikSCAT record of seasonal melt-freeze transitions over Arctic sea ice using ASCAT.” Remote Sensing of Environment, Vol. 141: pp. 214–230. doi:10.1016/j.rse.2013.11.004.
  • Nasonova, S., Scharien, R.K., Geldsetzer, T., Howell, S.E.L., and Power, D. 2018. “Optimal compact polarimetric parameters and texture features for discriminating sea ice types during winter and advanced melt.” Canadian Journal of Remote Sensing, Vol. 44(No. 4): pp. 390–411. doi:10.1080/07038992.2018.1527683.
  • Onstott, R.G., and Gogineni, S.P. 1985. “Active microwave measurements of Arctic sea ice under summer conditions.” Journal of Geophysical Research: Oceans, Vol. 90(No. C3): pp. 5035–5044. doi:10.1029/JC090iC03p05035.
  • Perovich, D.K., Grenfell, T.C., Light, B., and Hobbs, P.V. 2002. “Seasonal evolution of the albedo of multiyear Arctic sea ice.” Journal of Geophysical Research: Oceans, Vol. 107(No. C10): pp. 8044, SHE-20. doi:10.1029/2000JC000438.
  • Polashenski, C., Perovich, D., and Courville, Z. 2012. “The mechanisms of sea ice melt pond formation and evolution.” Journal of Geophysical Research: Oceans, Vol. 117(No. C1): pp. 1–23. doi:10.1029/2011JC007231.
  • Raney, R.K. 2006. “Dual-polarized SAR and stokes parameters.” IEEE Geoscience and Remote Sensing Letters, Vol. 3(No. 3): pp. 317–319. doi:10.1109/LGRS.2006.871746.
  • Raney, K.R., Cahill, J.T.S., Patterson Wesley, G., and Bussey, D.B.J. 2012. “The m-chi decomposition of hybrid dual-polarimetric radar data with application to lunar craters.” Journal of Geophysical Research: Planets, Vol. 117(No. E12): pp. n/a–n/a. doi:10.1029/2011JE003986.
  • Scharien, R.K., and Yackel, J.J. 2005. “Analysis of surface roughness and morphology of first-year sea ice melt ponds: Implications for microwave scattering.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 43(No. 12): pp. 2927–2939. doi:10.1109/TGRS.2005.857896.
  • Scharien, R.K., Yackel, J.J., Barber, D.G., Asplin, M., Gupta, M., and Isleifson, D. 2012. “Geophysical controls on C band polarimetric backscatter from melt pond covered Arctic first-year sea ice: Assessment using high-resolution scatterometry.” Journal of Geophysical Research: Oceans, Vol. 117(C9).
  • Scharien, R.K., Hochheim, K., Landy, J., and Barber, D.G. 2014. “First-year sea ice melt pond fraction estimation from dual-polarisation C-band SAR–part 2: Scaling in situ to Radarsat-2.” The Cryosphere, Vol. 8(No. 6): pp. 2163–2176. doi:10.5194/tc-8-2163-2014.
  • Scharien, R.K., Segal, R., Nasonova, S., Nandan, V., Howell, S.E., and Haas, C. 2017. “Winter Sentinel‐1 backscatter as a predictor of spring Arctic sea ice melt pond fraction.” Geophysical Research Letters, Vol. 44(No. 24): pp. 12–262. doi:10.1002/2017GL075547.
  • Scharien, R. K., Geldsetzer, T., Nasonova, S., Cafarella, S., and Tavri, A. 2018. “Assessment of seasonal sea ice type and roughness regime discrimination using a unique C-and L-band SAR database.” In IGARSS 2018, IEEE International Geoscience and Remote Sensing Symposium, pp. 7352–7353, IEEE.
  • Scheuchl, B., Hajnsek, I., and Cumming, I. 2002. “Sea ice classification using multi-frequency polarimetric SAR data.” In IEEE International Geoscience and Remote Sensing Symposium, Vol. 3, pp. 1914–1916, IEEE.
  • Singha, S., and Ressel, R. 2017. “Arctic sea ice characterization using RISAT-1 compact-pol SAR imagery and feature evaluation: A case study over Northeast Greenland.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 10(No. 8): pp. 3504–3514. doi:10.1109/JSTARS.2017.2691258.
  • Singha, S., Johansson, M., Hughes, N., Hvidegaard, S.M., and Skourup, H. 2018. “Arctic sea ice characterization using spaceborne fully polarimetric L-, C-, and X-band SAR with validation by airborne measurements.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 56(No. 7): pp. 3715–3734. doi:10.1109/TGRS.2018.2809504.
  • Singha, S., Johansson, A.M., and Doulgeris, A.P. 2021. “Robustness of SAR sea ice type classification across incidence angles and seasons at L-band.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 59(No. 12): pp. 9941–9952. doi:10.1109/TGRS.2020.3035029.
  • Snoeij, P., Unal, C.M.H., and Attema, E.P.W. 1991. “The response of the radar echo from the ocean surface to the surface wind vector at frequencies between 1 and 18 GHz compared with model predictions.” In [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management, Vol. 3, pp. 1281–1284, IEEE.
  • Stroeve, J., and Notz, D. 2015. “Insights on past and future sea-ice evolution from combining observations and models.” Global and Planetary Change, Vol. 135: pp. 119–132. doi:10.1016/j.gloplacha.2015.10.011.
  • Sumata, H., de Steur, L., Divine, D.V., Granskog, M.A., and Gerland, S. 2023. “Regime shift in Arctic ocean sea ice thickness.” Nature, Vol. 615(No. 7952): pp. 443–449. doi:10.1038/s41586-022-05686-x.
  • Tiuri, M.E., Sihvola, A.H., Nyfors, E.G., and Hallikaiken, M.T. 1984. “The complex dielectric constant of snow at microwave frequencies.” IEEE Journal of Oceanic Engineering, Vol. 9(No. 5): pp. 377–382. doi:10.1109/JOE.1984.1145645.
  • Webster, M.A., Holland, M., Wright, N.C., Hendricks, S., Hutter, N., Itkin, P., Light, B. et al. 2022. “Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model results.” Elementa: Science of the Anthropocene., Vol. 10(No. 1): pp. 000072.
  • Weeks, W.F., and Ackley, S.F. 1986. The Growth, Structure, and Properties of Sea Ice, pp. 9–164). USA: Springer.
  • Yackel, J.J., and Barber, D.G. 2000. “Melt ponds on sea ice in the Canadian Archipelago: 2. On the use of RADARSAT‐1 synthetic aperture radar for geophysical inversion.” Journal of Geophysical Research: Oceans, Vol. 105(No. C9): pp. 22061–22070. doi:10.1029/2000JC900076.
  • Yackel, J.J., Barber, D.G., Papakyriakou, T.N., and Breneman, C. 2007. “First-year sea ice spring melt transitions in the Canadian Arctic Archipelago from time-series synthetic aperture radar data 1992–2002.” Hydrological processes, Vol. 265: pp. 253–265.