42
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel Piezo-active 2–1–2 Composites with Sets of Large Hydrostatic Parameters

ORCID Icon
Pages 102-117 | Received 19 May 2023, Accepted 08 Jul 2023, Published online: 05 Oct 2023

References

  • R. Guo et al., Significantly enhanced permittivity and energy density in dielectric composites with aligned BaTiO3 lamellar structures, J. Mater. Chem. A. 8 (6), 3135 (2020). DOI: 10.1039/C9TA11360F.
  • Y. Zhang et al., Tailoring the strain performance of lead-free relaxor/ferroelectric-layered composites, J. Electroceram. 44 (1–2), 32 (2020). DOI: 10.1007/s10832-020-00201-y.
  • J. Wu et al., Effect of surface modification of ferroelectric ceramic component on the properties of PZT-type/epoxy piezoelectric composite with spiral structure, J. Alloys Compd 820, 153362 (2020). DOI: 10.1016/j.jallcom.2019.153362.
  • J. I. Roscow et al., Innovative Piezo-Active Composites and Their Structure – Property Relationships (World Scientific, Singapore, 2022). DOI: 10.1142/13003.
  • P. Hoffmann et al., Modular lead-free piezoceramic/polymer composites with locally adjustable piezoelectric properties, Open Ceram 13, 100320 (2023). DPI: DOI: 10.1016/j.oceram.2022.100320.
  • V. Yu. Topolov et al., Orientation effects and figures of merit in advanced 2–2-type composites based on [011]-poled domain-engineered single crystals, CrystEngComm 24 (6), 1177 (2022). DOI: 10.1039/D1CE01455B.
  • A. A. Nesterov et al., Longitudinal piezoelectric effect and hydrostatic response in novel laminar composites based on ferroelectric ceramics, Ceram. Internat 45 (17), 22241 (2019). DOI: 10.1016/j.ceramint.2019.07.248.
  • V. L. Stuber et al., Flexible lead-free piezoelectric composite materials for energy harvesting applications, Energy Technol. 7 (1), 177 (2019). DOI: 10.1002/ente.201800419.
  • Q. Ke et al., KNNS-BNZH lead-free 1-3 piezoelectric composite for ultrasonic and photoacoustic imaging, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 66 (8), 1395 (2019). DOI: 10.1109/TUFFC.2019.2914464.
  • T. Wang et al., Large-area piezoelectric single crystal composites via 3-D-printing-assisted dice-and-insert technology for hydrophone applications, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 68 (10), 3241 (2021). DOI: 10.1109/TUFFC.2021.3085842.
  • R. E. Newnham, D. P. Skinner, and L. E. Cross, Connectivity and piezoelectric-pyroelectric composites, Mater. Res. Bull 13 (5), 525 (1978). DOI: 10.1016/0025-5408(78)90161-7.
  • E. K. Akdogan, M. Allahverdi, and A. Safari, Piezoelectric composites for sensor and actuator applications, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 52 (5), 746 (2005). DOI: 10.1109/TUFFC.2005.1503962.
  • L. Li et al., Hydrostatic piezoelectric properties of [011] poled Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals and 2-2 lamellar composites, Appl. Phys. Lett. 104 (3), 032909 (2014). DOI: 10.1063/1.4862984.
  • Q. Yue et al., Design and fabrication of relaxor-ferroelectric single crystal PIN–PMN–PT/epoxy 2–2 composite based array transducer, Sens. Actuators A – Phys. 234, 34 (2015). DOI: 10.1016/j.sna.2015.08.017.
  • T. Cummins, P. Eliahoo, and K. K. Shung, High-frequency ultrasound array designed for ultrasound-guided breast biopsy, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 63 (6), 817 (2016). DOI: 10.1109/TUFFC.2016.2548993.
  • Z. Zeng et al., A plastic-composite-plastic structure high performance flexible energy harvester based on PIN-PMN-PT single crystal/epoxy 2-2 composite, Appl. Phys. Lett. 110 (10), 103501 (2017). DOI: 10.1063/1.4977938.
  • S. Hou et al., Fabrication of PMN-PT/epoxy 2–2 composite ultrasonic transducers and analysis based on equivalent circuit model, J. Elec. Materi. 47 (11), 6842 (2018). DOI: 10.1007/s11664-018-6603-0.
  • J. Yin, B. Jiang, and W. Cao, Elastic, piezoelectric, and dielectric properties of 0.955Pb··(Zn1/3Nb2/3O3-O.45PbTi03 single crystal with designed multidomains, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47 (1), 285 (2000). DOI: 10.1109/58.818772.
  • R. Zhang, B. Jiang, and W. Cao, Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals, J. Appl. Phys. 90 (7), 3471 (2001). DOI: 10.1063/1.1390494.
  • X. Liu et al., Complete set of material constants of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal with morphotropic phase boundary composition, J. Appl. Phys. 106 (7), 74112 (2009). DOI: 10.1063/1.3243169.
  • V. Yu. Topolov, and A. N. Isaeva, Hydrostatic piezoelectric parameters of lead-free 2–0–2 composites with two single-crystal components: Waterfall-like orientation dependences, J. Adv. Dielect. 10 (04), 2050015 (2020). DOI: 10.1142/S2010135X20500150.
  • S. Zhang, and L. C. Lim, Property matrices of [011]-poled rhombohedral Pb(Zn1/3Nb2/3)O3-(4.5-7)%PbTiO3 single crystals, AIP Adv. 8, 115010 (2018). DOI: 10.1063/1.5064418.
  • C. He et al., Full tensorial elastic, piezoelectric, and dielectric properties characterization of [011]-poled PZN-9%PT single crystal, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58 (6), 1127 (2011). DOI: 10.1109/TUFFC.2011.1921.
  • R. Zhang et al., Complete set of elastic, dielectric, and piezoelectric coefficients of 0.93Pb(Zn1∕3Nb2∕3)O3–0.07PbTiO3 single crystal poled along [011, Appl. Phys. Lett 89, 242908 (2006). DOI: 10.1063/1.2404613.
  • J. H. Huang, and W.-S. Kuo, The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions, J. Appl. Phys. 81 (3), 1378 (1997). DOI: 10.1063/1.363874.
  • F. Levassort et al., A matrix method for modeling electroelastic moduli of 0-3 piezo-composites, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44 (2), 445 (1997). DOI: 10.1109/58.585129.
  • T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, Oxford, New York, Toronto, 1990).
  • C. H. Sherman, and J. L. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 2007). DOI: 10.1007/978-0-387-33139-3.
  • M. Adachi et al., Temperature compensated piezoelectric lithium tetraborate crystal for high frequency surface acoustic wave and bulk wave device applications, Proc. IEEE Ultrason. Symp., San Francisco, CA, 16–18, Oct. 1985, IEEE, 1985, pp. 228–232. DOI: 10.1109/ULTSYM.1985.198508.
  • K. E. Evans, and K. L. Alderson, The static and dynamic moduli of auxetic microporous polyethylene, J. Mater. Sci. Lett. 11 (24), 1721 (1992). DOI: 10.1007/BF00736221.
  • D. La-Orauttapong et al., Phase diagram of the relaxor ferroelectric (1 − x)Pb(Zn1/3Nb2/3)O3−xPbTiO3, Phys. Rev. B. 65 (14), 144101 (2002). DOI: 10.1103/PhysRevB.65.144101.
  • L. V. Gibiansky, and S. Torquato, On the use of homogenization theory to design optimal piezocomposites for hydrophone applications, J. Mech. Phys. Solids 45 (5), 689 (1997). DOI: 10.1016/S0022-5096(96)00106-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.