62
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of a Metallic Implant on the Hysteresis of Ferroelectric BaTiO3 Ceramics

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 118-128 | Received 28 Apr 2023, Accepted 18 Jun 2023, Published online: 05 Oct 2023

References

  • C. O. González-Morán, and E. Suaste-Gómez, Developed and experimental evidence of a ceramic-controlled piezoelectric bulk implanted with Pt wire based on PLZT. Ferroelectrics 392 (1), 98 (2009). DOI: 10.1080/00150190903412564.
  • C. O. González-Morán et al., Ceramic-controlled piezoelectric bulk implanted with Pt wire based on BaTiO3 (optical microscopy, SEM, EDS) and PLZT (optical bi-dimensional characterization). Ferroelectrics 423 (1), 105 (2011). DOI: 10.1080/00150193.2011.620888.
  • E. Suaste-Gomez, J. J. A. Flores-Cuautle, and C. O. Gonzalez-Moran, Opacity sensor based on photovoltaic effect of ferroelectric PLZT ceramic with Pt wire implant. IEEE Sensors J. 10 (6), 1056 (2010). DOI: 10.1109/JSEN.2010.2042953.
  • E. Suaste Gomez et al., Piezoelectric ceramic controlled with platinum implant as new isolator in ECG. MSA 05 (05), 338 (2014). DOI: 10.4236/msa.2014.55039.
  • C. O. González-Morán, J. J. A. Flores-Cuautle, and E. Suaste-Gómez, A piezoelectric plethysmograph sensor based on a Pt wire implanted lead lanthanum zirconate titanate bulk ceramic, Sensors 10 (8), 7146 (2010). DOI: 10.3390/s100807146.
  • S. Roberts, Dielectric and piezoelectric properties of barium titanate. Phys. Rev. 71 (12), 890 (1947). DOI: 10.1103/PhysRev.71.890.
  • B. Jaffe, Piezoelectric Ceramics. New York: Academic Press; 1971.
  • K. Uchino, Ferroelectric Devices. New York: Marcel Dekker; 2000.
  • M. Acosta et al., BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4 (4), 041305 (2017). DOI: 10.1063/1.4990046.
  • J. S. Galsin, In Solid State Physics, edited by J. S. Galsin, 340–354. New York: Academic Press; 2019.
  • S. Li et al., Involvement of unsaturated switching in the endurance cycling of Si‐doped HfO2 ferroelectric thin films. Adv. Electron. Mater. 6 (8), 2000264 (2020). DOI: 10.1002/aelm.202000264.
  • Q. Wali, M. Aamir, A. Ullah, F. J. Iftikhar, M. E. Khan, J. Akhtar, S. Yang, Fundamentals of Hysteresis in Perovskite Solar Cells: From Structure‐Property Relationship to Neoteric Breakthroughs. 2022.
  • H.-H. Huang et al., Performance enhancement and transient current response of ferroelectric tunnel junction: a theoretical study. IEEE Trans. Electron Devices 69 (8), 4686 (2022). DOI: 10.1109/TED.2022.3184654.
  • K. Y. Lee et al., Controllable charge transfer by ferroelectric polarization mediated triboelectricity. Adv. Funct. Mater. 26 (18), 3067 (2016). DOI: 10.1002/adfm.201505088.
  • J. P. V. McConville et al., Ferroelectric domain wall memristor. Adv. Funct. Mater. 30 (28), 2000109 (2020). DOI: 10.1002/adfm.202000109.
  • N. Ma, and Y. Yang, Boosted photocurrent via cooling ferroelectric BaTiO3 materials for self-powered 405 nm light detection. Nano Energy 60, 95 (2019). DOI: 10.1016/j.nanoen.2019.03.036.
  • Y. Sun et al., Multilevel memory and artificial synaptic plasticity in P(VDF-TrFE)-based ferroelectric field effect transistors. Nano Energy 98, 107252 (2022). DOI: 10.1016/j.nanoen.2022.107252.
  • X. Chai et al., Nonvolatile ferroelectric field-effect transistors. Nat. Commun. 11 (1), 2811 (2020). DOI: 10.1038/s41467-020-16623-9.
  • G. Lara Hernandez et al., Comparative performance of PLZT and PVDF pyroelectric sensors used to the thermal characterization of liquid samples. Adv. Mater. Sci. Eng. 2013 (2013), 1 (2013). DOI: 10.1155/2013/281279.
  • C. B. Sawyer, and C. H. Tower, Rochelle salt as a dielectric. Phys. Rev. 35 (3), 269 (1930). DOI: 10.1103/PhysRev.35.269.
  • A. Kumar et al., Composition dependent ferro-piezo hysteresis loops and energy density properties of mechanically activated (Pb1 − xLax)(Zr0.60Ti0.40)O3 ceramics. Appl. Phys. A 126 (3), 175 (2020). DOI: 10.1007/s00339-020-3356-4.
  • A. Kumar et al., High energy storage properties and electrical field stability of energy efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 relaxor ferroelectric ceramics. Electron. Mater. Lett. 15 (3), 323 (2019). DOI: 10.1007/s13391-019-00124-z.
  • A. N. Laskovski, and M. R. Yuce, Presented at the 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL, 2010 2010. unpublished).
  • J. C. Wang et al., Modification of microstructure on PZT films for ultrahigh frequency transducer. Ceram. Int. 41 (Suppl 1), S650 (2015). DOI: 10.1016/j.ceramint.2015.07.039.
  • M. Kuwabara et al., Shift of the Curie point of barium titanate ceramics with sintering temperature. J. Am. Ceram. Soc. 80 (10), 2590 (2005). DOI: 10.1111/j.1151-2916.1997.tb03161.x.
  • C. A. Miller, Hysteresis loss and dielectric constant in barium titanate. Br. J. Appl. Phys. 18 (12), 1689 (1967). DOI: 10.1088/0508-3443/18/12/303.
  • H.-I. Hsiang, and F.-S. Yen, Effect of crystallite size on the ferroelectric domain growth of ultrafine BaTiO3 powders. J. Am. Ceram. Soc. 79 (4), 1053 (1996). DOI: 10.1111/j.1151-2916.1996.tb08547.x.
  • H.-I. Hsiang, F.-S. Yen, and C.-Y. Huang, Effects of Porosity on Dielectric Properties of BaTiO 3 Ceramics, Jpn. J. Appl. Phys. 34 (4R), 1922 (1995). DOI: 10.1143/JJAP.34.1922.
  • I. Rychetský, J. Petzelt, and T. Ostapchuk, Grain-boundary and crack effects on the dielectric response of high-permittivity films and ceramics, Appl. Phys. Lett. 81 (22), 4224 (2002). DOI: 10.1063/1.1525394.
  • V. R. Mudinepalli et al., Effect of grain size on dielectric and ferroelectric properties of nanostructured Ba0.8Sr0.2TiO3 ceramics. J. Adv. Ceram. 4 (1), 46 (2015). DOI: 10.1007/s40145-015-0130-8.
  • R. C. Pohanka et al., Report of NRL Progress. Washington, DC: Naval Research Laboratory; 1975.
  • Y. Bian, Y. Zhang, and X. Xia, Design and fabrication of a multi-electrode metal-core piezoelectric fiber and its application as an airflow sensor. J. Bionic Eng. 13 (3), 416 (2016). DOI: 10.1016/S1672-6529(16)60314-1.
  • E. Suaste Gomez, C. O. Gonzalez Moran, and J. J. A. Flores Cuautle, In Piezoelectric Ceramics, edited by E. Suaste Gomez, 209–228. London: Intech; 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.