57
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study of the Lattice Thermal Conductivity of Janus In2Ge2S6 and In2Ge2S3Se3 Bilayers

, &
Pages 140-149 | Received 24 May 2023, Accepted 03 Jul 2023, Published online: 05 Oct 2023

References

  • M. Li, X. Chen, and L. Zhang, High thermoelectric properties of Janus WSeS bilayer membranes with different stacking modes. 41, 12 (2020). Available at SSRN 3996908.
  • L. Yang et al., High performance thermoelectric materials: progress and their applications, Adv. Energy Mater. 8 (6), 1701797 (2018). DOI: 10.1002/aenm.201701797.
  • J. Bera et al., Low lattice thermal conductivity and its role in the remarkable thermoelectric performance of newly predicted SiS2 and SiSe2 monolayers, Comput. Mater. Sci. 201, 110931 (2022). DOI: 10.1016/j.commatsci.2021.110931.
  • W.-H. Chen et al., Power generation of thermoelectric generator with plate fins for recovering low-temperature waste heat, Appl. Energy 306, 118012 (2022). DOI: 10.1016/j.apenergy.2021.118012.
  • Y. Iqbal et al., Thermoelectric MgAgSb alloys for sustainable energy application, Intl. J. Energy Res. 46 (15), 22266 (2022). DOI: 10.1002/er.8600.
  • N. Bisht et al., Progress of hybrid nanocomposite materials for thermoelectric applications, Mater. Adv. 2 (6), 1927 (2021). DOI: 10.1039/D0MA01030H.
  • M. M. R. Al-Fartoos et al., A short review on thermoelectric glazing for sustainable built environment, Energies 15 (24), 9589 (2022). DOI: 10.3390/en15249589.
  • S. Zhu et al., Persistently self-powered wearable thermoelectric generator enabled by phase-change inorganics as the heat sink, Materials Today Phys. 32, 101011 (2023). DOI: 10.1016/j.mtphys.2023.101011.
  • Y. Gao et al., A hierarchical thermal interface material based on a double self-assembly technique enables efficient output power via solar thermoelectric conversion, J. Mater. Chem. A. 10 (19), 10452 (2022). DOI: 10.1039/D2TA00818A.
  • R. Thomas et al., Reduction in thermal conductivity and electrical resistivity in Cu2SnSe3/Cu2Se composite thermoelectric system, Mater. Res. Bull. 120, 110607 (2019). DOI: 10.1016/j.materresbull.2019.110607.
  • S. Karmakar, and T. Saha-Dasgupta, First-principles prediction of enhanced thermoelectric properties of double transition metal MXenes: Ti 3− x Mo x C 2 T 2;(x= 0.5, 1, 1.5, 2, 2.5, T= − OH/− O/− F), Phys. Rev. Mater. 4 (12), 124007 (2020). DOI: 10.1103/PhysRevMaterials.4.124007.
  • J. Maassen, Limits of thermoelectric performance with a bounded transport distribution, Phys. Rev. B. 104 (18), 184301 (2021). DOI: 10.1103/PhysRevB.104.184301.
  • M. Zeeshan et al., FeTaSb and FeMnTiSb as promising thermoelectric materials: An ab initio approach, Phys. Rev. Materials 2 (6), 065407 (2018). DOI: 10.1103/PhysRevMaterials.2.065407.
  • T. Berry et al., Enhancing thermoelectric performance of TiNiSn half-Heusler compounds via modulation doping, Chem. Mater. 29 (16), 7042 (2017). DOI: 10.1021/acs.chemmater.7b02685.
  • Y. K. Lee et al., Enhancing p-type thermoelectric performances of polycrystalline SnSe via tuning phase transition temperature, J. Am. Chem. Soc. 139 (31), 10887 (2017). DOI: 10.1021/jacs.7b05881.
  • G. Tan et al., High thermoelectric performance in electron-doped AgBi3S5 with ultralow thermal conductivity, J. Am. Chem. Soc. 139 (18), 6467 (2017). DOI: 10.1021/jacs.7b02399.
  • L. E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science 321 (5895), 1457 (2008). DOI: 10.1126/science.1158899.
  • S. R. Boona, Nanomagnets boost thermoelectric output, Nature 549 (7671), 169 (2017). DOI: 10.1038/549169a.
  • M. Zeeshan, C. K. Vishwakarma, and B. Mani, Low lattice thermal conductivity in Zintl phases Na 2 AuBi and Na 2 AuSb: An ab initio study, Phys. Rev. Mater. 6 (8), 085404 (2022). DOI: 10.1103/PhysRevMaterials.6.085404.
  • S. Saini et al., Ultra-low lattice thermal conductivity and high figure of merit for Janus MoSeTe monolayer: a peerless material for high temperature regime thermoelectric devices, J. Mater. Sci. 57 (13), 7012 (2022). DOI: 10.1007/s10853-022-07065-3.
  • S. Saini, A. Shrivastava, and S. Singh, A giant thermoelectric figure of merit and ultra-low lattice thermal conductivity using Janus monolayer: a first principle investigation, Eur. Phys. J. Plus 137 (7), 876 (2022). DOI: 10.1140/epjp/s13360-022-02996-x.
  • R. Venkatasubramanian, Phonon blocking electron transmitting superlattice structures as advanced thin film thermoelectric materials, Semiconductors and Semimetals 71, 175 (2001).
  • S. Lv et al., A comprehensive review of strategies and approaches for enhancing the performance of thermoelectric module, Energies 13 (12), 3142 (2020). DOI: 10.3390/en13123142.
  • X. Shuai et al., Fabrication of fine and complex lattice structure Al 2 O 3 ceramic by digital light processing 3D printing technology, J. Mater. Sci. 55 (16), 6771 (2020). DOI: 10.1007/s10853-020-04503-y.
  • A.-Y. Lu et al., Janus monolayers of transition metal dichalcogenides, Nat. Nanotechnol. 12 (8), 744 (2017). DOI: 10.1038/nnano.2017.100.
  • J. Zhang et al., Janus monolayer transition-metal dichalcogenides, ACS Nano. 11 (8), 8192 (2017). DOI: 10.1021/acsnano.7b03186.
  • Y. Yang et al., Structural and electronic properties of 2H phase Janus transition metal dichalcogenide bilayers, Superlattices Microstruct. 131, 8 (2019). DOI: 10.1016/j.spmi.2019.05.027.
  • S.-D. Guo et al., Predicted Janus SnSSe monolayer: a comprehensive first-principles study, Phys. Chem. Chem. Phys. 21 (44), 24620 (2019). DOI: 10.1039/c9cp04590b.
  • S. Deng et al., Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons, Phys. Chem. Chem. Phys. 21 (33), 18161 (2019). DOI: 10.1039/c9cp03639c.
  • S.-D. Guo, Y.-F. Li, and X.-S. Guo, Predicted Janus monolayer ZrSSe with enhanced n-type thermoelectric properties compared with monolayer ZrS2, Comput. Mater. Sci. 161, 16 (2019). DOI: 10.1016/j.commatsci.2019.01.035.
  • F. Li et al., Electronic and optical properties of pristine and vertical and lateral heterostructures of Janus MoSSe and WSSe, J. Phys. Chem. Lett. 8 (23), 5959 (2017). DOI: 10.1021/acs.jpclett.7b02841.
  • C. Wang, G. Gao, and S. Lin, Comparative investigation of the thermoelectric transport properties of Janus ZrS2Se and ZrS3 bilayers, Results Phys. 30, 104810 (2021). DOI: 10.1016/j.rinp.2021.104810.
  • H. Wang et al., High thermoelectric performance of Janus monolayer and bilayer HfSSe, Physica Status Solidi (b) 259 (10), 2200090 (2022). DOI: 10.1002/pssb.202200090.
  • W. T. Adrian et al., The ASP system DLV: advancements and applications, Künstl. Intell. 32 (2–3), 177 (2018). DOI: 10.1007/s13218-018-0533-0.
  • G. Kresse, and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1), 15 (1996). DOI: 10.1016/0927-0256(96)00008-0.
  • W. Yi et al., qvasp: A flexible toolkit for VASP users in materials simulations, Comput. Phys. Commun. 257, 107535 (2020). DOI: 10.1016/j.cpc.2020.107535.
  • A. Patel et al., High thermoelectric performance in two-dimensional Janus monolayer material WS-X (X = Se and Te), ACS Appl. Mater. Interfaces. 12 (41), 46212 (2020). DOI: 10.1021/acsami.0c13960.
  • S. Saini, A. Shrivastava, and S. Singh, An optimum thermoelectric figure of merit using Ge2Se2 monolayer: an ab-initio approach, Physica E. 138, 115060 (2022). DOI: 10.1016/j.physe.2021.115060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.