262
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Dual-Cylinder Piezoelectric Energy Harvester Using Wind Energy

, , , , & ORCID Icon
Pages 150-161 | Received 16 Apr 2023, Accepted 01 Jul 2023, Published online: 05 Oct 2023

References

  • Z.-Q. Lu et al., Energy harvesting of a fluid-conveying piezoelectric pipe, Appl. Math. Modell. 107, 165 (2022). DOI: 10.1016/j.apm.2022.02.027.
  • A. R. M. Siddique, S. Mahmud, and B. V. Heyst, A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms, Energy Conver. Manage 106, 728 (2015). DOI: 10.1016/j.enconman.2015.09.071.
  • Z. Yang et al., High-performance piezoelectric energy harvesters and their applications, Joule 2 (4), 642 (2018). DOI: 10.1016/j.joule.2018.03.011.
  • J. Barbosa et al., When is the sun going to shine for the Brazilian energy sector? A story of how modelling affects solar electricity, Renew. Energ 162, 1684 (2020). DOI: 10.1016/j.renene.2020.09.091.
  • S. K. Gupta, and S. Gupta, The role of nanofluids in solar thermal energy: A review of recent advances, Mater. Today: Proc. 44, 401 (2021). DOI: 10.1016/j.matpr.2020.09.749.
  • N. Kannan, and D. Vakeesan, Solar energy for future world: - A review, Renewable Sustainable Energy Rev. 62, 1092 (2016). DOI: 10.1016/j.rser.2016.05.022.
  • S. Chen et al., Quantitative assessment of the environmental risks of geothermal energy: A review, J. Environ. Manage. 276, 111287 (2020). DOI: 10.1016/j.jenvman.2020.111287.
  • Y. Li et al., Numerical investigation of a novel approach to coupling compressed air energy storage in aquifers with geothermal energy, Appl. Energy 279, 115781 (2020). DOI: 10.1016/j.apenergy.2020.115781.
  • T. Tan et al., Enhanced low-velocity wind energy harvesting from transverse galloping with super capacitor, Energy 187, 115915 (2019). DOI: 10.1016/j.energy.2019.115915.
  • J. Wang et al., Enhancement of low-speed piezoelectric wind energy harvesting by bluff body shapes: Spindle-like and butterfly-like cross-sections, Aerosp. Sci. Technol. 103, 105898 (2020). DOI: 10.1016/j.ast.2020.105898.
  • C. L. Zhang et al., Wind energy harvesting from a conventional turbine structure with an embedded vibro-impact dielectric elastomer generator, J. Sound Vib. 487, 115616 (2020). DOI: 10.1016/j.jsv.2020.115616.
  • A. L. Baker et al., Modelling the impact of tidal range energy on species communities, Ocean & Coastal Management 193, 105221 (2020). DOI: 10.1016/j.ocecoaman.2020.105221.
  • H.-B. Goh et al., Potential of coastal headlands for tidal energy extraction and the resulting environmental effects along Negeri Sembilan coastlines: A numerical simulation study, Energy 192, 116656 (2020). DOI: 10.1016/j.energy.2019.116656.
  • B. Kresning et al., The impacts of tidal energy development and sea-level rise in the Gulf of Maine, Energy 187, 115942 (2019). DOI: 10.1016/j.energy.2019.115942.
  • T. Shi et al., Performance of an omnidirectional piezoelectric wind energy harvester, Wind Energy 24 (11), 1167 (2021). DOI: 10.1002/we.2624.
  • W.-J. Su, and W.-Y. Lin, Design and analysis of a vortex-induced bi-directional piezoelectric energy harvester, Int. J. Mech. Sci 173, 105457 (2020). DOI: 10.1016/j.ijmecsci.2020.105457.
  • W. Sun, and J. Seok, A novel self-tuning wind energy harvester with a slidable bluff body using vortex-induced vibration, Energy Conver. Manage 205, 112472 (2020). DOI: 10.1016/j.enconman.2020.112472.
  • W. Sun, and J. Seok, Novel galloping-based piezoelectric energy harvester adaptable to external wind velocity, MSSP 152, 107477 (2021). DOI: 10.1016/j.ymssp.2020.107477.
  • L. B. Zhang et al., Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters, Appl. Energy 254, 113737 (2019). DOI: 10.1016/j.apenergy.2019.113737.
  • D. Asadi, and T. Farsadi, Active flutter control of thin walled wing-engine system using piezoelectric actuators, Aerosp. Sci. Technol. 102, 105853 (2020). DOI: 10.1016/j.ast.2020.105853.
  • J. M. McCarthy et al., Fluttering energy harvesters in the wind: A review, J. Sound Vib. 361, 355 (2016). DOI: 10.1016/j.jsv.2015.09.043.
  • Z.-Q. Lu et al., Two-span piezoelectric beam energy harvesting, Int. J. Mech. Sci. 175, 105532 (2020). DOI: 10.1016/j.ijmecsci.2020.105532.
  • Z.-Q. Lu et al., Rotational nonlinear double-beam energy harvesting, Smart Mater. Struct. 31 (2), 025020 (2022). DOI: 10.1088/1361-665X/ac4579.
  • F. M. Foong et al., Increased power output of an electromagnetic vibration energy harvester through anti-phase resonance, MSSP 116, 129 (2019). DOI: 10.1016/j.ymssp.2018.06.012.
  • S. Wang et al., An electromagnetic energy harvester using ferrofluid as a lubricant, Mod. Phys. Lett. B. 32 (34n36), 1840084 (2018). DOI: 10.1142/S0217984918400845.
  • P. K. Illenberger et al., The integrated self priming circuit: An autonomous electrostatic energy harvester with voltage boosting, IEEE Trans. Ind. Electron. 68 (8), 6982 (2021). DOI: 10.1109/TIE.2020.3003591.
  • Z. Yang et al., Modelling and validation of electret-based vibration energy harvesters in view of charge migration, Int. J. Precis. Eng. and Manuf-Green. Tech. 8 (1), 113 (2021). DOI: 10.1007/s40684-019-00156-8.
  • J. Jia et al., An asymmetric bending-torsional piezoelectric energy harvester at low wind speed, Energy 198, 117287 (2020). DOI: 10.1016/j.energy.2020.117287.
  • H. L. Dai, A. Abdelkefi, and L. Wang, Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations, Nonlinear Dyn. 77 (3), 967 (2014). DOI: 10.1007/s11071-014-1355-8.
  • S. Wang et al., Development of a novel non-contact piezoelectric wind energy harvester excited by vortex-induced vibration, Energy Conver. Manage 235, 113980 (2021). DOI: 10.1016/j.enconman.2021.113980.
  • M. N. Ghasemi-Nejhad, V. Sivadas, and A. M. Wickenheiser, A study of several vortex-induced vibration techniques for piezoelectric wind energy harvesting, Journal, 7977 (2011). DOI: 10.1117/12.878493.
  • D. Huang, S. Zhou, and G. Litak, Theoretical analysis of multi-stable energy harvesters with high-order stiffness terms, Commun. Nonlinear Sci. Numer. Simul. 69, 270 (2019). DOI: 10.1016/j.cnsns.2018.09.025.
  • J. Kan et al., A piezoelectric wind energy harvester excited indirectly by a coupler via magnetic-field coupling, Energy Conver. Manage 240, 114250 (2021). DOI: 10.1016/j.enconman.2021.114250.
  • C. Hou et al., Design and Modeling of a Magnetic-Coupling Monostable Piezoelectric Energy Harvester Under Vortex-Induced Vibration, IEEE Access 8, 108913 (2020). DOI: 10.1109/ACCESS.2020.3000526.
  • W. Sui et al., Modeling and experimental investigation of magnetically coupling bending-torsion piezoelectric energy harvester based on vortex-induced vibration, J. Intell. Mater. Syst. Struct. 33 (9), 1147 (2022). DOI: 10.1177/1045389X211048229.
  • C. Hou et al., Theoretical analysis of a vibration-magnetic piezoelectric energy harvester scavenging for vortex-induced vibration, Ferroelectrics 582 (1), 141 (2021). DOI: 10.1080/00150193.2021.1951042.
  • J. Meng et al., Design and experiment investigation of a percussive piezoelectric energy harvester scavenging on wind galloping oscillation, Ferroelectrics 584 (1), 121 (2021). DOI: 10.1080/00150193.2021.1984769.
  • H. Zhang et al., Scavenging wind induced vibration by an electromagnet energy harvester from single to multiple wind directions, Ferroelectrics 577 (1), 170 (2021). DOI: 10.1080/00150193.2021.1916360.
  • J. Meng et al., Design and simulation investigation of piezoelectric energy harvester under wake-induced vibration coupling vortex-induced vibration, Ferroelectrics 585 (1), 128 (2021). DOI: 10.1080/00150193.2021.1991221.
  • H. Tian et al., Performance investigation of piezoaeroelastic energy harvester with trailing-edge flap, Sens. Actuators, A. 334, 113345 (2022). DOI: 10.1016/j.sna.2021.113345.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.