41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design and Characterization of Eu2+/Ln3+ Co-doped SrAl2Si2O8 Photostimulated Phosphors for Optical Information Storages

ORCID Icon, , , , , , & show all
Pages 14-30 | Received 06 Feb 2023, Accepted 14 Jun 2023, Published online: 31 Jan 2024

Reference

  • Y. Z. Halefoglu et al., Preparation and photoluminescence properties of aluminate phosphors produced by combustion synthesis, Appl. Radiat. Isot. 142, 46 (2018). DOI: 10.1016/j.apradiso.2018.09.012.
  • F. Liu et al., Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa5O8, Sci. Rep. 3 (1), 1554 (2013). DOI: 10.1038/srep01554.
  • W. B. Dai et al., Thermometer of stable SrAl2Si2O8: Ce3+, Tb3+ based on synergistic luminescence, J. Lumin. 217, 22 (2020).
  • A. Bessière et al., ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness, Opt. Express. 19 (11), 10131 (2011). DOI: 10.1364/OE.19.010131.
  • Z. Pan, Y. Y. Lu, and F. Liu, Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates, Nat. Mater. 11 (1), 58 (2012). DOI: 10.1038/nmat3173.
  • C. Y. Cao, and A. Xie, Synthesis, optical properties, and energy transfer of Ce3+, Tb3+ doped KLu2 F7, J. Rare Earths 35 (1), 58 (2017). DOI: 10.1016/S1002-0721(16)60174-6.
  • X. C. Wu et al., Preparation and photoluminescence properties of crystalline GeO2 nanowires, Chem. Phys. Lett. 349 (3-4), 210 (2001). DOI: 10.1016/S0009-2614(01)01213-1.
  • Y. Wu, L. Zhu, and H. Mao, Tunable luminescence and energy transfer for Ce3+/Tb3+/Sm3+ doped SrAl2Si2O8 phosphors, Ceram. Int. 44 (8), 10015 (2018). DOI: 10.1016/j.ceramint.2018.03.030.
  • L. J. Daumann, A natural lanthanide-binding protein facilitates separation and recovery of rare earth elements, ACS Cent. Sci. 7 (11), 1780 (2021). DOI: 10.1021/acscentsci.1c01247.
  • M. Wang et al., Enhanced phosphorescence in N contained Ba2SiO4:Eu2+ for X-ray and cathode ray tubes, Opt. Mater. 32 (9), 1042 (2010)., DOI: 10.1016/j.optmat.2010.02.027.
  • R. Chen, On the calculation of activation energies and frequency factors from glow curves, J. Appl. Phys. 40, 579 (1969).
  • T. K. Ogawa et al., Photoluminescence and scintillation properties of Ce-doped Sr2Al2SiO7 crystals, J. Lumin. 202, 409 (2018). DOI: 10.1016/j.jlumin.2018.06.011.
  • G. F. J. Garlick, and A. F. Gibson, The electron trap mechanism of luminescence in sulphide and silicate phosphors, Proc. Phys. Soc. 60 (6), 574 (1948). DOI: 10.1088/0959-5309/60/6/308.
  • L. J. Luo, Y. W. Zhu, and P. Chen, Luminescent properties of Eu2+-activated SrAl2Si2O8 as an potential blue phosphor for near UV LED chips, Amr 750-752, 956 (2013). DOI: 10.4028/www.scientific.net/AMR.750-752.956.
  • Y. Pan et al., Eu2+→Eu3+ reduction and Tb3+→Tb4+ transformation in SrAl2Si2O8:Eu/Tb system, J. Alloys Compd. 769, 932 (2018). DOI: 10.1016/j.jallcom.2018.07.340.
  • J. P. Xue et al., Achieving non-contact optical thermometer via inherently Eu2+/Eu3+-activated SrAl2Si2O8 phosphors prepared in air, J. Alloys Compd. 843, 155858 (2020). DOI: 10.1016/j.jallcom.2020.155858.
  • C. Yang et al., Tunable white light emission of rare earth ions doped single matrix SrAl2Si2O8 phosphors, J. Mater. Sci: Mater. Electron. 31 (2), 1057 (2019). DOI: 10.1007/s10854-019-02617-x.
  • Z. Wei et al., Enhanced long afterglow of SrAl2Si2O8:Eu2+ by codoping Dy3+, J. Mater. Sci: Mater. Electron. 29 (23), 20517 (2018). DOI: 10.1007/s10854-018-0188-5.
  • P. C. Ma et al., Determination of temperature dependence of full matrix material constants of PZT-8 piezoceramics using only one sample, J Alloys Compd. 714, 20 (2017). DOI: 10.1016/j.jallcom.2017.04.296.
  • T. Richhariya et al., Investigation of photoluminescence, thermoluminescence, and energy transfer mechanism in Ce/Dy co-doped Sr2Al2SiO7, Mater. Sci. Semicond. Process 159, 107396 (2023). DOI: 10.1016/j.mssp.2023.107396.
  • S. Mondal et al., Rare earth element doped hydroxyapatite luminescent bioceramics contrast agent for enhanced biomedical imaging and therapeutic applications, Ceram. Int. 46 (18), 29249 (2020)., DOI: 10.1016/j.ceramint.2020.08.099.
  • B. Wang et al., Thermal stability and photoluminescence of Mn2+ activated green-emitting feldspar phosphor SrAl2Si2O8: Mn2+ for wide gamut w-LED backlight, Opt. Mater. 99, 0925 (2020).
  • R. Oesten, and H. Böhm, Flux growth of melilite single crystals, J. Cryst. Growth 102 (4), 919 (1990). DOI: 10.1016/0022-0248(90)90861-E.
  • A. Turner, J. W. Scott, and L. A. Green, Rare earth elements in plastics, Sci. Total Environ. 774, 145405 (2021). DOI: 10.1016/j.scitotenv.2021.145405.
  • K. M. Manu, S. Ananthakumar, and M. T. Sebastian, Electrical and thermal properties of low permittivity Sr2Al2SiO7 ceramic filled HDPE composites, Ceram. Int. 39 (5), 4945 (2013). DOI: 10.1016/j.ceramint.2012.11.090.
  • V. Saraswathi et al., Thermoluminescence response and trap features of gamma-irradiated Sr2Al2SiO7:Dy3+ phosphors, Ceram. Int. 48 (24), 36110 (2022). DOI: 10.1016/j.ceramint.2022.08.163.
  • G. H. Li et al., Luminescent properties of Sr2Al2SiO7:Ce3+,Eu2+ phosphors for near UV-excited white light-emitting diodes, Mater. Lett. 65 (23–24), 3418 (2011). DOI: 10.1016/j.matlet.2011.07.050.
  • J. S. Zhou, and G. Fiete, Rare earths in a nutshell, Phys. Today 73 (1), 66 (2020). DOI: 10.1063/PT.3.4397.
  • X. Li et al., Enhancement of luminescence properties of SrAl2Si2O8: Eu3+ red phosphor, Ceram. Int. 46 (11), 17376 (2020). DOI: 10.1016/j.ceramint.2020.04.027.
  • K. Manu, T. Joseph, and M. T. Sebastian, Temperature compensated Sr2Al2SiO7 ceramic for microwave applications, Mater. Chem. Phys. 133 (1), 21 (2012). DOI: 10.1016/j.matchemphys.2011.12.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.