87
Views
6
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Chemoprotection Effect of Multidrug Resistance 1 (MDR1) Gene Transfer to Hematopoietic Progenitor Cells and Engrafted in Mice with Cancer Allows Intensified Chemotherapy

, M.D., Ph.D. & , M.D., Ph.D.
Pages 659-668 | Published online: 11 Jun 2009

REFERENCES

  • Sorrentino B. P., Brandt S. J., Bodine D., Gottesman M., Pastan I., et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 1992; 257(5066)99–103, [INFOTRIEVE], [CSA]
  • Boesen J. J., Nooter K., Valerio D. Circumvention of chemotherapy-induced myelosuppression by transfer of the mdr1 gene. Biotherapy 1993; 6(4)291–302, [INFOTRIEVE], [CROSSREF], [CSA]
  • Sorrentino B. P., McDonagh K. T., Woods D., Orlic D. Expression of retroviral vectors containing the human multidrug resistance 1 cDNA in hematopoietic cells of transplanted mice. Blood 1995; 86(2)491–501, [INFOTRIEVE], [CSA]
  • Schwarzenberger P., Spence S., Lohrey N., Kmiecik T., Longo D. L., et al. Gene transfer of multidrug resistance into a factor-dependent human hematopoietic progenitor cell line: in vivo model for genetically transferred chemoprotection. Blood 1996; 87(7)2723–2731, [INFOTRIEVE], [CSA]
  • Hanania E. G., Deisseroth A. B. Serial transplantation shows that early hematopoietic precursor cells are transduced by MDR-1 retroviral vector in a mouse gene therapy model. Cancer Gene Ther. 1994; 1(1)21–25, [INFOTRIEVE], [CSA]
  • Ujhelly O., Ozvegy C., Varady G., Cervenak J., Homolya L., et al. Application of a human multidrug transporter (ABCG2) variant as selectable marker in gene transfer to progenitor cells. Hum. Gene Ther. 2003; 14(4)403–412, [INFOTRIEVE], [CROSSREF], [CSA]
  • Klein C., Baum C. Gene therapy for inherited disorders of haematopoietic cells. Hematol. J. 2004; 5(2)103–111, [INFOTRIEVE], [CROSSREF], [CSA]
  • May C., Rivella S., Callegari J., Heller G., Gaensler K. M., et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 2000; 406(6791)82–86, [INFOTRIEVE], [CROSSREF], [CSA]
  • Pawliuk R., Westerman K. A., Fabry M. E., Payen E., Tighe R., et al. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 2001; 294(5550)2368–2371, [INFOTRIEVE], [CROSSREF], [CSA]
  • Levasseur D. N., Ryan T. M., Pawlik K. M., Townes T. M. Correction of a mouse model of sickle cell disease: lentiviral/antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood 2003; 102(13)4312–4319, [INFOTRIEVE], [CROSSREF], [CSA]
  • Persons D. A., Hargrove P. W., Allay E. R., Hanawa H., Nienhuis A. W. The degree of phenotypic correction of murine beta -thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number. Blood 2003; 101(6)2175–2183, [INFOTRIEVE], [CROSSREF], [CSA]
  • Imren S., Payen E., Westerman K. A., Pawliuk R., Fabry M. E., et al. Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 2002; 99(22)14380–14385, [INFOTRIEVE], [CROSSREF], [CSA]
  • Cassel A., Cottler-Fox M., Doren S., Dunbar C. E. Retroviral-mediated gene transfer into CD34-enriched human peripheral blood stem cells. Exp. Hematol. 1993; 21(4)585–591, [INFOTRIEVE], [CSA]
  • Hanawa H., Hematti P., Keyvanfar K., Metzger M. E., Krouse A., et al. Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a simian immunodeficiency virus-based lentiviral vector system. Blood 2004; 103(11)4062–4069, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kay M. A., Glorioso J. C., Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. 2001; 7(1)33–40, [INFOTRIEVE], [CROSSREF], [CSA]
  • Podda S., Ward M., Himelstein A., Richardson C., de la Flor-Weiss E., et al. Transfer and expression of the human multiple drug resistance gene into live mice. Proc. Natl. Acad. Sci. USA 1992; 89(20)9676–9680, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hacein-Bey-Abina S., Le Deist F., Carlier F., Bouneaud C., Hue C., et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med. 2002; 346(16)1185–1193, [INFOTRIEVE], [CROSSREF], [CSA]
  • Allsopp R. C., Weissman I. L. Replicative senescence of hematopoietic stem cells during serial transplantation: does telomere shortening play a role?. Oncogene 2002; 21(21)3270–3273, [INFOTRIEVE], [CROSSREF], [CSA]
  • Ward M., Richardson C., Pioli P., Smith L., Podda S., et al. Transfer and expression of the human multiple drug resistance gene in human CD34+ cells. Blood 1994; 84(5)1408–1414, [INFOTRIEVE], [CSA]
  • Sawaoka H., Kawano S., Tsuji S., Tsujii M., Gunawan E. S., et al. Cyclooxygenase-2 inhibitors suppress the growth of gastric cancer xenografts via induction of apoptosis in nude mice. Am. J. Physiol. 1998; 274(6 Pt. 1)G1061–G1067, [INFOTRIEVE], [CSA]
  • Hanania E. G., Deisseroth A. B. Serial transplantation shows that early hematopoietic precursor cells are transduced by MDR-1 retroviral vector in a mouse gene therapy model. Cancer Gene Ther. 1994; 1(1)21–25, [INFOTRIEVE], [CSA]
  • Bunting K. D., Zhou S., Lu T., Sorrentino B. P. Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo. Blood 2000; 96(3)902–909, [INFOTRIEVE], [CSA]
  • Laufs S., Baum C., Fruehauf S. Transplantation of human hematopoietic progenitor cells transduced with a retroviral vector containing the human multidrug-resistance-1 gene for myeloprotective gene therapy. Transplant Proc. 2002; 34(6)2325–2329, [INFOTRIEVE], [CROSSREF], [CSA]
  • Demetri G. D., Griffin J. D. Hematopoietic growth factors and high-dose chemotherapy: will grams succeed where milligrams fail?. J. Clin. Oncol. 1990; 8(5)761–764, [INFOTRIEVE], [CSA]
  • Jillella A. P., Ustun C. What is the optimum number of CD34(+) peripheral blood stem cells for an autologous transplant?. Stem Cells Dev. 2004; 13(6)598–606, [INFOTRIEVE], [CROSSREF], [CSA]
  • Yannaki E., Athanasiou E., Xagorari A., Constantinou V., Batsis I., et al. G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp. Hematol. 2005; 33(1)108–119, [INFOTRIEVE], [CROSSREF], [CSA]
  • Bernardi R., Grisendi S., Pandolfi P. P. Modelling haematopoietic malignancies in the mouse and therapeutical implications. Oncogene 2002; 21(21)3445–3458, [INFOTRIEVE], [CROSSREF], [CSA]
  • Carpinteiro A., Peinert S., Ostertag W., Zander A. R., Hossfeld D. K., et al. Genetic protection of repopulating hematopoietic cells with an improved MDR1-retrovirus allows administration of intensified chemotherapy following stem cell transplantation in mice. Int. J. Cancer 2002; 98(5)785–792, [INFOTRIEVE], [CROSSREF], [CSA]
  • Cowan K. H., Moscow J. A., Huang H., Zujewski J. A., O'Shaughnessy J., et al. Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients. Clin. Cancer Res. 1999; 5(7)1619–1628, [INFOTRIEVE], [CSA]
  • Mickisch G. H., Licht T., Merlino G. T., Gottesman M. M., Pastan I. Chemotherapy and chemosensitization of transgenic mice which express the human multidrug resistance gene in bone marrow: efficacy, potency, and toxicity. Cancer Res. 1991; 51(19)5417–5424, [INFOTRIEVE], [CSA]
  • Luskey B. D., Rosenblatt M., Zsebo K., Williams D. A. Stem cell factor, interleukin-3, and interleukin-6 promote retroviral-mediated gene transfer into murine hematopoietic stem cells. Blood 1992; 80(2)396–402, [INFOTRIEVE], [CSA]
  • Bodine D. M., Karlsson S., Nienhuis A. W. Combination of interleukins 3 and 6 preserves stem cell function in culture and enhances retrovirus-mediated gene transfer into hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 1989; 86(22)8897–8901, [INFOTRIEVE], [CROSSREF], [CSA]
  • Bunting K. D., Galipeau J., Topham D., Benaim E., Sorrentino B. P. Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice. Blood 1998; 92(7)2269–2279, [INFOTRIEVE], [CSA]
  • Licht T., Gottesman M. M., Pastan I. Transfer of the MDR1 (multidrug resistance) gene: protection of hematopoietic cells from cytotoxic chemotherapy, and selection of transduced cells in vivo. Cytokines Mol. Ther. 1995; 1(1)11–20, [INFOTRIEVE], [CSA]
  • McLachlin J. R., Eglitis M. A., Ueda K., Kantoff P. W., Pastan I. H., et al. Expression of a human complementary DNA for the multidrug resistance gene in murine hematopoietic precursor cells with the use of retroviral gene transfer. J. Natl. Cancer Inst. 1990; 82(15)1260–1263, [INFOTRIEVE], [CSA]
  • Mickisch G. H., Merlino G. T., Galski H., Gottesman M. M., Pastan I. Transgenic mice that express the human multidrug-resistance gene in bone marrow enable a rapid identification of agents that reverse drug resistance. Proc. Natl. Acad. Sci. USA 1991; 88(2)547–551, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hesdorffer C., Ayello J., Ward M., Kaubisch A., Vahdat L., , Phase I, et al. trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J. Clin. Oncol. 1998; 16(1)165–172, [INFOTRIEVE], [CSA]
  • Ragg S., Xu-Welliver M., Bailey J., D'Souza M., Cooper R., et al. Direct reversal of DNA damage by mutant methyltransferase protein protects mice against dose-intensified chemotherapy and leads to in vivo selection of hematopoietic stem cells. Cancer Res. 2000; 60(18)5187–5195, [INFOTRIEVE], [CSA]
  • Hanania E. G., Giles R. E., Kavanagh J., Fu S. Q., Ellerson D., et al. Results of MDR-1 vector modification trial indicate that granulocyte/macrophage colony-forming unit cells do not contribute to posttransplant hematopoietic recovery following intensive systemic therapy. Proc. Natl. Acad. Sci. USA 1996; 93(26)15346–15351, [INFOTRIEVE], [CROSSREF], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.