116
Views
13
CrossRef citations to date
0
Altmetric
NEW DRUGS

Small Molecule Signal Transduction Inhibitors for the Treatment of Solid Tumors

, M.D. & , M.A., FRCP, Ph.D.
Pages 347-365 | Published online: 11 Jun 2009

REFERENCES

  • Sainsbury J. R., Farndon J. R., Needham G. K., et al. Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet 1987; 1: 1398–1402
  • Gibault L., Metges J. P., Conan-Charlet V., et al. Diffuse EGFR staining is associated with reduced overall survival in locally advanced oesophageal squamous cell cancer. Br. J. Cancer 2005; 93: 107–115
  • Fukuoka M., Yano S., Giaccone G., et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J. Clin. Oncol. 2003; 21: 2237–2246
  • Kris M. G., Natale R. B., Herbst R. S., et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 2003; 290: 2149–2158
  • Perez-Soler R. Phase II clinical trial data with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib (OSI-774) in non-small-cell lung cancer. Clin. Lung Cancer 2004; 6: S20–S23, (Suppl. 1)
  • Shepherd F. A., Rodrigues Pereira J., Ciuleanu T., et al. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. 2005; 353: 123–132
  • Thatcher N., Chang A., Parikh P., et al. Results of a Phase III placebo-controlled study (ISEL) of gefitinib (IRESSA) plus best supportive care in patients with advanced non-small cell lung cancer who had received 1 or 2 prior chemotherapy regimens. Proc. Am. Assoc. Cancer Res. Late Breaking Session 2005
  • Giaccone G., Herbst R. S., Manegold C., et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 1. J. Clin. Oncol. 2004; 22: 777–784
  • Herbst R. S., Giaccone G., Schiller J. H., et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 2. J. Clin. Oncol. 2004; 22: 785–794
  • Herbst R. S., Prager D., Hermann R., et al. TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J. Clin. Oncol. 2005; 23: 5892–5899
  • Gatzemeier U. P., Szczesna A. Results of a phase III trial of erlotinib combined with cisplatin and gemcitabine Chemotherapy in Advanced Non-Small Cell Lung Cancer. JCO 2004; 22(14S), Abs 7010
  • Paez J. G., Janne P. A., Lee J. C., et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497–500
  • Takano T., Ohe Y., Sakamoto H., et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J. Clin. Oncol. 2005; 23: 6829–6837
  • Pao W., Miller V., Zakowski M., et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA 2001; 101: 13306–13311
  • Bell D. W., Lynch T. J., Haserlat S. M., et al. Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. J. Clin. Oncol. 2005; 23: 8081–8092
  • Grunwald V., Hidalgo M. Developing inhibitors of the epidermal growth factor receptor for cancer treatment. J. Natl. Cancer Inst. 2003; 95: 851–867
  • Lee J. W., Soung Y. H., Kim S. Y., et al. Somatic mutations of EGFR gene in squamous cell carcinoma of the head and neck. Clin. Cancer Res. 2005; 11: 2879–2882
  • Nagahara H., Mimori K., Ohta M., et al. Somatic mutations of epidermal growth factor receptor in colorectal carcinoma. Clin. Cancer Res. 2005; 11: 1368–1371
  • Hanawa M., Suzuki S., Dobashi Y., et al. EGFR protein overexpression and gene amplification in squamous cell carcinomas of the esophagus. Int. J. Cancer 2005; 118: 1173–1180
  • Xie D., Zeng Y. X., Wang H. J., et al. Amplification and overexpression of epidermal growth factor receptor gene in glioblastomas of Chinese patients correlates with patient's age but not with tumor's clinicopathological pathway. Acta Neuropathol. (Berl.) 2005; 110: 481–489
  • Haas-Kogan D. A., Prados M. D., Tihan T., et al. Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J. Natl. Cancer Inst. 2005; 97: 880–887
  • Wheeler R. H., Jones D., Sharma P., et al. Clinical and molecular phase II study of gefitinib in patients with recurrent squamous cell cancer of the head and neck. JCO 2005; 23(165), Abs 5531
  • Adelstein D. J., Rybicki L. A., Carroll M. A., et al. Phase II trial of gefitinib for recurrent or metastatic esophageal or gastroesophageal junction cancer. JCO 2005; 23(165), Abs 4054
  • Polychronis A., Sinnett H. D., Hadjiminas D., et al. Preoperative gefitinib versus gefitinib and anastrozole in postmenopausal patients with oestrogen-receptor positive and epidermal-growth-factor-receptor-positive primary breast cancer: a double-blind placebo-controlled phase II randomised trial. Lancet Oncol. 2005; 6: 383–391
  • Robertson J. F.R., Gutteridge E., Cheung K. L., et al. Gefitinib is active in acquired tamoxifen-resistant oestrogen receptor-positive and ER-negative breast cancer: results from a phase II study. JCO, 22(14S), Abs 23
  • Hutcheson I. R., Knowlden J. M., Madden T. A., et al. Oestrogen receptor-mediated modulation of the EGFR/MAPK pathway in tamoxifen-resistant MCF-7 cells. Breast Cancer Res. Treat. 2003; 81: 81–93
  • Moore M. J.G.D., Hamm J., Kotecha J., Gallinger S., Au H. J., Nomikos D., Ding K., Ptaszynski M., Parulekar W. Erlotinib improves survival when added to gemcitabine in patients with advanced pancreatic cancer. A phase III trial of the National Cancer Institute of Canada Clinical Trials Group [NCIC-CTG]. Proceedings from ASCO Gastrointestinal Cancers Symposium. 2005, Abs 77
  • Slamon D. J., Clark G. M., Wong S. G., et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987; 235: 177–182
  • DiGiovanna M. P., Stern D. F., Edgerton S. M., et al. Relationship of epidermal growth factor receptor expression to ErbB-2 signaling activity and prognosis in breast cancer patients. J. Clin. Oncol. 2005; 23: 1152–1160
  • Moulder S. L., Yakes F. M., Muthuswamy S. K., et al. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res. 2001; 61: 8887–8895
  • Johnston S. R., Leary A. Lapatinib: a novel EGFR/HER2 tyrosine kinase inhibitor for cancer. Drugs Today (Barc). 2006; 42: 441–453
  • Burris H. A., 3rd, Hurwitz H. I., Dees E. C., et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J. Clin. Oncol. 2005; 23: 5305–5313
  • Gomez H. C. M., Doval D., Nag S., Chow L., Ang P. C., Ahmad N. M., Berger M., Newstat B., Stein S., Sledge G. Biomarker results from a phase II randomized study of lapatinib as first line treatment for patients with ErbB2 FISH-amplified advanced or metastatic breast cancer. Breast Can Res Treat, 94(s1), Abs 1071
  • Blackwell K. B. H., Pegram M., Storniolo A., Salazar V., Maleski J., Lin X., Spector N., Stein S., Berger M. Determining Relevant Biomarkers from Tissue and Serum that May Predict Response to Single Agent Lapatinib in Trastuzumab Refractory Metastatic Breast Cancer. JCO 2005; 23(16S), Abs 3004
  • Geyer C. E., Forster J., Lindquist D., et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. Dec 28, 2006; 355(26)2733–2743
  • Allen L. F., Eiseman I. A., Fry D. W., et al. CI-1033, an irreversible pan-erbB receptor inhibitor and its potential application for the treatment of breast cancer. Semin Oncol. 2003; 30: 65–78
  • Campos S., Hamid O., Seiden M. V., et al. Multicenter, randomized phase II trial of oral CI-1033 for previously treated advanced ovarian cancer. J. Clin. Oncol. 2005; 23: 5597–5604
  • Hellawell G. O., Turner G. D., Davies D. R., et al. Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res. 2002; 62: 2942–2950
  • Zhang X., Lin M., van Golen K. L., et al. Multiple Signaling Pathways are Activated During Insulin-like Growth Factor-I (IGF-I) Stimulated Breast Cancer Cell Migration. Breast Cancer Res Treat. 2005; 93: 159–168
  • Sachdev D., Hartell J. S., Lee A. V., et al. A dominant negative type I insulin-like growth factor receptor inhibits metastasis of human cancer cells. J Biol Chem 2004; 279: 5017–5024
  • Jones H. E., Goddard L., Gee J. M., et al. Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr Relat Cancer 2004; 11: 793–814
  • Zhang X., Yee D. Insulin-like growth factor binding protein-1 (IGFBP-1) inhibits breast cancer cell motility. Cancer Res 2002; 62: 4369–4375
  • Scotlandi K., Manara M. C., Nicoletti G., et al. Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res 2005; 65: 3868–3876
  • Garcia-Echeverria C., Pearson M. A., Marti A., et al. In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell 2004; 5: 231–239
  • Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002; 29: 15–18
  • Miller K. D., Chap L. I., Holmes F. A., et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J. Clin. Oncol. 2005; 23: 792–799
  • Hurwitz H., Fehrenbacher L., Novotny W., et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 2335–2342
  • Mross K., Drevs J., Muller M., et al. Phase I clinical and pharmacokinetic study of PTK/ZK, a multiple VEGF receptor inhibitor, in patients with liver metastases from solid tumours. Eur J Cancer 2005; 41: 1291–1299
  • Hecht J. T. T., Jaeger E., Hainsworth J., Wolff R., Lloyd K., Bodoky G., Borner M., Laurent D., Jacques C. A randomized, double-blind, placebo-controlled, phase III study in patients with metastatic adenocarcinoma of the colon or rectum receiving first-line chemotherapy with oxaliplatin/5-fluorouracil/leucovorin and PTK/ZK 222584 or placebo (CONFIRM-1). JCO 2005; 23(16S), Abs 3
  • Drevs J., Medinger M., Moss K., et al. Phase I clinical evaluation of AZD2171, a highly potent VEGF receptor tyrosine kinase inhibitor, in patients with advanced tumors. JCO 2005; 23(S16), Abs 3002
  • Motzer R. R.B., Michaelson M., Redman B., Hudes G., Wilding G., Bukowski R., George D., Kim S., Baum C. Phase 2 trials of SU11248 show antitumor activity in second-line therapy for patients with metastatic renal cell carcinoma. ASCO 2005
  • Motzer R., Hutson T., Tomczak P., et al. Sunitinib versus interferon alfa in metastatic renal-cell cancer. NEJM, 2007; 356: 115–124
  • Demetri G. D., Van Oosterom A. T., Garett G. R., et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumours after failure of imatinib: a randomised controlled trial. Lancet 2006; 368: 1329–1338
  • Rugo H. S., Herbst R. S., Liu G., , Phase I, et al. trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J. Clin. Oncol. 2005; 23: 5474–5483
  • Hurwitz H., Dowlati A., Savage S., et al. Safety, tolerability and pharmacokinetics of oral administration of GW786034 in pts with solid tumors. JCO 2005; 23(16S), Abs 3012
  • Yigitbasi O. G., Younes M. N., Doan D., et al. Tumor cell and endothelial cell therapy of oral cancer by dual tyrosine kinase receptor blockade. Cancer Res 2004; 64: 7977–7984
  • Martinelli E., Takimoto C., van Oosterom A., et al. AEE788, a novel multitargeted inhibitor of ErbB and VEGF receptor family 1335 tyrosine kinases: preliminary phase I results. JCO 2005; 23(16S)
  • Miettinen M., Lasota J. Gastrointestinal stromal tumors–definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Virchows Arch 2001; 438: 1–12
  • Emile J. F., Theou N., Tabone S., et al. Clinicopathologic, phenotypic, and genotypic characteristics of gastrointestinal mesenchymal tumors. Clin Gastroenterol Hepatol 2004; 2: 597–605
  • Demetri G. D., von Mehren M., Blanke C. D., et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002; 347: 472–480
  • Heinrich M. C., Corless C. L., Demetri G. D., et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol. 2003; 21: 4342–4349
  • Hotte S. J., Winquist E. W., Lamont E., et al. Imatinib mesylate in patients with adenoid cystic cancers of the salivary glands expressing c-kit: a Princess Margaret Hospital phase II consortium study. J. Clin. Oncol. 2005; 23: 585–590
  • Dresemann G. Imatinib and hydroxyurea in pretreated progressive glioblastoma multiforme: a patient series. Ann Oncol 2005
  • Gotlib J., Cross N. C., Gilliland D. G. Eosinophilic disorders: molecular pathogenesis, new classification, and modern therapy. Best Pract Res Clin Haematol 2006; 19: 535–569
  • Beeram M., Patnaik A., Rowinsky E. K. Raf: a strategic target for therapeutic development against cancer. J. Clin. Oncol. 2005; 23: 6771–6790
  • Bos J. L. ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–4689
  • Karp J. E., Lancet J. E. Farnesyltransferase inhibitors (FTIs) in myeloid malignancies. Ann Hematol 2004; 83: S87–S88, (Suppl 1)
  • Johnston S. R., Hickish T., Ellis P., , Phase I I, et al. study of the efficacy and tolerability of two dosing regimens of the farnesyl transferase inhibitor, R115777, in advanced breast cancer. J. Clin. Oncol. 2003; 21: 2492–2499
  • Rao S., Cunningham D., de Gramont A., et al. Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J. Clin. Oncol. 2004; 22: 3950–3957
  • Van Cutsem E., Van de Velde H., Karasek P., Oettle H., Vervenne W. L., Szawlowski A. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. JCO 2004; 22: 1430–1438
  • Du W., Prendergast G. C. Geranylgeranylated RhoB mediates suppression of human tumor cell growth by farnesyltransferase inhibitors. Cancer Res 1999; 59: 5492–5496
  • Appels N. M., Beijnen J. H., Schellens J. H. Development of farnesyl transferase inhibitors: a review. Oncologist 2005; 10: 565–578
  • Martin N. E., Brunner T. B., Kiel K. D., et al. A phase I trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L-778,123 and radiotherapy for locally advanced pancreatic cancer. Clin Cancer Res 2004; 10: 5447–5454
  • Ellis C. A., Vos M. D., Wickline M., et al. Tamoxifen and the farnesyl transferase inhibitor FTI-277 synergize to inhibit growth in estrogen receptor-positive breast tumor cell lines. Breast Cancer Res Treat 2003; 78: 59–67
  • Davies H., Bignell G. R., Cox C., et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954
  • Flaherty K. B. M., Schuchter L., Tuveson D., Lee R., Schwartz B., Lathia C., Weber B., O'Dwyer P. Phase I/II trial of BAY 43-9006, carboplatin and paclitaxel demonstrates preliminary antitumor activity in the expansion cohort of patients with metastatic melanoma. ASCO 2004
  • Eisen T., Ahmad T., Gore M., Marais R., Gibbens I., James M., Schwartz B., Bergamini L. Phase I trial of BAY 43-9006 (sorafenib) combined with dacarbazine (DTIC) in metastatic melanoma patients. JCO 2005; 23(14S), Abs 7508
  • Escudier B., Eisen T., Stadler W. M., Szczylik C., Oudard S., Siebels M., et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007; 356: 125–134
  • Foster K., Prowse A., van den Berg A., et al. Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma. Hum Mol Genet 1994; 3: 2169–2173
  • Gnarra J. R., Tory K., Weng Y., et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 1994; 7: 85–90
  • Herman J. G., Latif F., Weng Y., et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 1994; 91: 9700–9704
  • Lonergan K. M., Iliopoulos O., Ohh M., et al. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol Cell Biol 1998; 18: 732–741
  • Iliopoulos O., Levy A. P., Jiang C., et al. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA 1996; 93: 10595–10599
  • Rinehart J., Adjei A. A., Lorusso P. M., et al. Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J. Clin. Oncol. 2004; 22: 4456–4462
  • Janus A., Robak T., Smolewski P. The mammalian target of the rapamycin (mTOR) kinase pathway: its role in tumourigenesis and targeted antitumour therapy. Cell Mol Biol Lett 2005; 10: 479–498
  • Samuels Y., Velculescu V. E. Oncogenic mutations of PIK3CA in human cancers. Cell Cycle 2004; 3: 1221–1224
  • Leslie N. R., Downes C. P. PTEN function: how normal cells control it and tumour cells lose it. Biochem J 2004; 382: 1–11
  • Bondar V. M., Sweeney-Gotsch B., Andreeff M., et al. Inhibition of the phosphatidylinositol 3′-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol Cancer Ther 2002; 1: 989–997
  • Hu L., Hofmann J., Lu Y., et al. Inhibition of phosphatidylinositol 3′-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res 2002; 62: 1087–1092
  • Dutcher J. P. Mammalian target of rapamycin inhibition. Clin Cancer Res 2004; 10: 6382S–63857S
  • Atkins M. B., Hidalgo M., Stadler W. M., et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol. 2004; 22: 909–918
  • Chan S., Scheulen M. E., Johnston S., , Phase I I, et al. study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J. Clin. Oncol. 2005; 23: 5314–5322
  • Hudes G., Carducci M., Tomczak P., Dutcher J., Figlin R., Kapoor A., et al. Temsirolimus, interferon alfa or both for advanced renal-cell carcinoma. N Engl J Med 2007; 356: 2271–2281
  • Yu K., Toral-Barza L., Discafani C., et al. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 2001; 8: 249–258
  • Nam S., Kim D., Cheng J. Q., et al. Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. Cancer Res 2005; 65: 9185–9189
  • Wiener J. R., Windham T. C., Estrella V. C., , Activated S RC, et al. protein tyrosine kinase is overexpressed in late-stage human ovarian cancers. Gynecol Oncol 2003; 88: 73–79
  • Johnson F. M., Saigal B., Talpaz M., et al. Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells. Clin Cancer Res 2005; 11: 6924–6932
  • Yezhelyev M. V., Koehl G., Guba M., et al. Inhibition of SRC tyrosine kinase as treatment for human pancreatic cancer growing orthotopically in nude mice. Clin Cancer Res 2004; 10: 8028–8036
  • Talpaz M., Shah NP., Kantarjian H., et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006; 354: 2531–25341
  • Shapiro G. I. Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol. 2006; 24: 1770–1783
  • Tan A. R., Headlee D., Messmann R., , Phase I, et al. clinical and pharmacokinetic study of flavopiridol administered as a daily 1-hour infusion in patients with advanced neoplasms. J. Clin. Oncol. 2002; 20: 4074–4082
  • Grendys E. C., Jr., Blessing J. A., Burger R., et al. A phase II evaluation of flavopiridol as second-line chemotherapy of endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2005; 98: 249–253
  • Shah M. A., Kortmansky J., Motwani M., et al. A phase I clinical trial of the sequential combination of irinotecan followed by flavopiridol. Clin Cancer Res 2005; 11: 3836–3845
  • Tan A. R., Yang X., Berman A., , Phase I, et al. trial of the cyclin-dependent kinase inhibitor flavopiridol in combination with docetaxel in patients with metastatic breast cancer. Clin Cancer Res 2004; 10: 5038–5047
  • Patel V., Lahusen T., Leethanakul C., et al. Antitumor activity of UCN-01 in carcinomas of the head and neck is associated with altered expression of cyclin D3 and p27(KIP1). Clin Cancer Res 2002; 8: 3549–3560
  • Sausville E. A., Arbuck S. G., Messmann R., , Phase I, et al. trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J. Clin. Oncol. 2001; 19: 2319–2333
  • Lara P. N., Jr., Mack P. C., Synold T., et al. The cyclin-dependent kinase inhibitor UCN-01 plus cisplatin in advanced solid tumors: a California cancer consortium phase I pharmacokinetic and molecular correlative trial. Clin Cancer Res 2005; 11: 4444–4450
  • Smyth J. F., Aamdal S., Awada A., , Phase I I, et al. study of E7070 in patients with metastatic melanoma. Ann Oncol 2005; 16: 158–161
  • Blagden S., de Bono J. Drugging cell cycle kinases in cancer therapy. Curr Drug Targets 2005; 6: 325–335
  • Hartson S. D., Matts R. L. Association of Hsp90 with cellular Src-family kinases in a cell-free system correlates with altered kinase structure and function. Biochemistry 1994; 33: 8912–8920
  • da Rocha Dias S., Friedlos F., Light Y., et al. Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res 2005; 65: 10686–10691
  • Solit D. B., Zheng F. F., Drobnjak M., et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res 2002; 8: 986–993
  • Gossett D. R., Bradley M. S., Jin X., et al. 17-Allyamino-17-demethoxygeldanamycin and 17-NN-dimethyl ethylene diamine-geldanamycin have cytotoxic activity against multiple gynecologic cancer cell types. Gynecol Oncol 2005; 96: 381–388
  • Bisht K. S., Bradbury C. M., Mattson D., et al. Geldanamycin and 17-allylamino-17-demethoxygeldanamycin potentiate the in vitro and in vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity. Cancer Res 2003; 63: 8984–8995
  • Nguyen D. M., Lorang D., Chen G. A., et al. Enhancement of paclitaxel-mediated cytotoxicity in lung cancer cells by 17-allylamino geldanamycin: in vitro and in vivo analysis. Ann Thorac Surg 2001; 72: 371–378, discussion 378–379
  • Smith V., Sausville E. A., Camalier R. F., et al. Comparison of 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: effects on Hsp90 and client proteins in melanoma models. Cancer Chemother Pharmacol 2005; 56: 126–137
  • Caravita T., de Fabritiis P., Palumbo A., et al. Bortezomib: efficacy comparisons in solid tumors and hematologic malignancies. Nat Clin Pract Oncol 2006; 3: 374–387
  • Richardson P. G., Hideshima T., Anderson K. C. Bortezomib (PS-341): a novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control 2003; 10: 361–369
  • Richardson P. G., Sonneveld P., Schuster M. W., et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005; 352: 2487–2498
  • Horvath C. M., Darnell J. E. The state of the STATs: recent developments in the study of signal transduction to the nucleus. Curr Opin Cell Biol 1997; 9: 233–239
  • Xu Q., Briggs J., Park S., et al. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 2005; 24: 5552–5560
  • Baus D., Pfitzner E. Specific function of STAT3, SOCS1, and SOCS3 in the regulation of proliferation and survival of classical Hodgkin lymphoma cells. Int J Cancer 2005
  • Faderl S., Ferrajoli A., Harris D., et al. WP-1034, a novel JAK-STAT inhibitor, with proapoptotic and antileukemic activity in acute myeloid leukemia (AML). Anticancer Res 2005; 25: 1841–18450
  • Insinga A., Monestiroli S., Ronzoni S., et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 2005; 11: 71–76
  • Vrana J. A., Decker R. H., Johnson C. R., et al. Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene 1999; 18: 7016–7025
  • Saito A., Yamashita T., Mariko Y., et al. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci USA 1999; 96: 4592–4597
  • Kelly W. K., O'Connor O. A., Krug L. M., , Phase I, et al. study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol. 2005; 23: 3923–3931
  • Ryan Q. C., Headlee D., Acharya M., , Phase I, et al. and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J. Clin. Oncol. 2005; 23: 3912–322
  • Sandor V., Bakke S., Robey RW., et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res 2002; 8: 718–728
  • Silverman L. R., Mufti G. J. Methylation inhibitor therapy in the treatment of myelodysplastic syndrome. Nat Clin Pract Oncol 2005; 2: S12–S23, (Suppl 1)
  • Kojima K., Konopleva M., Samudio I. J., et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 2005; 106: 3150–3159
  • Schimmer A. D., Welsh K., Pinilla C., et al. Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell 2004; 5: 25–35
  • Sapi E., Alvero A. B., Chen W., et al. Resistance of ovarian carcinoma cells to docetaxel is XIAP dependent and reversible by phenoxodiol. Oncol Res 2004; 14: 567–578
  • Rutherford T. O.M.D., Makkenchery A., Baker L., Azodi M., Schwartz P., Mor G. Phenoxodiol Phase Ib/II Study in Patients with Recurrent Ovarian Cancer that are Resistant to > Second Line Chemotherapy. Proc. Am. Assoc. Cancer Res. 2004
  • Shih Y. N., Chiu C. H., Tsai C. M., et al. Interstitial pneumonia during gefitinib treatment of non-small-cell lung cancer. J Chin Med Assoc 2005; 68: 183–186
  • Barnes C. J., Bagheri-Yarmand R., Mandal M., et al. Suppression of epidermal growth factor receptor, mitogen-activated protein kinase, and Pak1 pathways and invasiveness of human cutaneous squamous cancer cells by the tyrosine kinase inhibitor ZD1839 (Iressa). Mol Cancer Ther 2003; 2: 345–351
  • Xia W., Mullin R. J., Keith B. R., et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 2002; 21: 6255–6263
  • Spector N. L., Xia W., Burris H., 3rd, et al. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J. Clin. Oncol. 2005; 23: 2502–2512
  • Tan A. R., Yang X., Hewitt S. M., et al. Evaluation of biologic end points and pharmacokinetics in patients with metastatic breast cancer after treatment with erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor. J. Clin. Oncol. 2004; 22: 3080–3090
  • Liu G., Rugo H. S., Wilding G., et al. Dynamic contrast-enhanced magnetic resonance imaging as a pharmacodynamic measure of response after acute dosing of AG-013736, an oral angiogenesis inhibitor, in patients with advanced solid tumors: results from a phase I study. J. Clin. Oncol. 2005; 23: 5464–5473
  • Jager P. L., Gietema J. A., van der Graaf W. T. Imatinib mesylate for the treatment of gastrointestinal stromal tumours: best monitored with FDG PET. Nucl Med Commun 2004; 25: 433–438
  • Ratain M., Eisen T., Stadler W., Flaherty K. T., Kaye S. B., Rosner G. L., , Phase I I, et al. placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. JCO, 2006; 24: 2505–2512
  • Guix M. K. S., Reyzer M., Zhang J., Shyr Y., McLaren B., Newsome-Johnson K., Lipscomb W., Dugger T., Arteaga C. Short Course of EGF Receptor Tyrosine Kinase Inhibitor Erlotinib Reduces Tumor Cell Proliferation and Active MAP Kinase in Situ in Untreated Operable Breast Cancers: A Strategy for patient Selection into Phase II Trials with Signaling Inhibitors. ASCO 2005
  • Nicholson R. I., McClelland R. A., Robertson J. F., et al. Involvement of steroid hormone and growth factor cross-talk in endocrine response in breast cancer. Endocr Relat Cancer 1999; 6: 373–387
  • Schiff R., Massarweh S. A., Shou J., et al. Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res 2004; 10: 331S–336S
  • Gee J. M., Harper M. E., Hutcheson I. R., et al. The antiepidermal growth factor receptor agent gefitinib (ZD1839/Iressa) improves antihormone response and prevents development of resistance in breast cancer in vitro. Endocrinology 2003; 144: 5105–5117
  • Chu I., Blackwell K., Chen S., et al. The dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016), cooperates with tamoxifen to inhibit both cell proliferation- and estrogen-dependent gene expression in antiestrogen-resistant breast cancer. Cancer Res 2005; 65: 18–25
  • Doisneau-Sixou S. F., Cestac P., Faye J. C., et al. Additive effects of tamoxifen and the farnesyl transferase inhibitor FTI-277 on inhibition of MCF-7 breast cancer cell-cycle progression. Int J Cancer 2003; 106: 789–798
  • Chow L. W.C., Shun Y., Jassem J., et al. Phase 3 study of temsirolimus with letrozole or letrozole alone in postmenopausal women with locally advanced or metastatic breast cancer. Breast Can Res Treat, 100(S1), Abs 6091
  • Lu Y., Zi X., Zhao Y., et al. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 2001; 93: 1852–1857
  • Sini P., Wyder L., Schnell C., et al. The antitumor and antiangiogenic activity of vascular endothelial growth factor receptor inhibition is potentiated by ErbB1 blockade. Clin Cancer Res 2005; 11: 4521–432
  • Hainsworth J. D., Sosman J. A., Spigel D. R., et al. Phase II trial of bevacizumab and erlotinib in patients with metastatic renal carcinoma (RCC). J. Clin. Oncol. (Meeting Abstracts) 2004; 22: 4502
  • Kokubo Y., Gemma A., Noro R., et al. Reduction of PTEN protein and loss of epidermal growth factor receptor gene mutation in lung cancer with natural resistance to gefitinib (IRESSA). Br J Cancer 2005; 92: 1711–1719
  • She Q. B., Solit D., Basso A., et al. Resistance to gefitinib in PTEN-null HER-overexpressing tumor cells can be overcome through restoration of PTEN function or pharmacologic modulation of constitutive phosphatidylinositol 3′-kinase/Akt pathway signaling. Clin Cancer Res 2003; 9: 4340–4346
  • Burchert A., Wang Y., Cai D., et al. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 2005; 19: 1774–1782
  • Huang S., Armstrong E. A., Benavente S., et al. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res 2004; 64: 5355–5362
  • Xia W., Gerard C. M., Liu L., et al. Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene 2005; 24: 6213–6221
  • Slamon D. J., Leyland-Jones B., Shak S., et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–792
  • Cunningham D., Humblet Y., Siena S., et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351: 337–345
  • Raben D., Helfrich B. A., Chan D., et al. ZD1839, a selective epidermal growth factor receptor tyrosine kinase inhibitor, alone and in combination with radiation and chemotherapy as a new therapeutic strategy in non-small cell lung cancer. Semin Oncol. 2002; 29: 37–46
  • Van Cutsem E., van de Velde H., Karasek P., , Phase I II, et al. trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J. Clin. Oncol. 2004; 22: 1430–1438
  • Eberhard D. A., Johnson B. E., Amler L. C., et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol. 2005; 23: 5900–5909
  • Braun S., Pantel K., Muller P., et al. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N. Engl. J. Med. 2000; 342: 525–533
  • Pantel K., Schlimok G., Braun S., et al. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J. Natl. Cancer Inst. 1993; 85: 1419–1424
  • Stathopoulou A., Vlachonikolis I., Mavroudis D., et al. Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J. Clin. Oncol. 2002; 20: 3404–3412
  • Braun S., Kentenich C., Janni W., et al. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J. Clin. Oncol. 2000; 18: 80–86
  • Bozionellou V., Mavroudis D., Perraki M., et al. Trastuzumab administration can effectively target chemotherapy-resistant cytokeratin-19 messenger RNA-positive tumor cells in the peripheral blood and bone marrow of patients with breast cancer. lin Cancer Res 2004; 10: 8185–8194
  • Romond E. H., Perez E. A., Bryant J., et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005; 353: 1673–1684
  • Galanis E. B.J., Maurer M., Hidalgo M., Kreisberg J., Peralba J., Jenkins R., Walsh D. N997B: Phase II Trial of CCI-779 in Recurrent Glioblastoma Multiforme: Updated Results and Correlative Laboratory Analysis. JCO 2005; 23(s16), Abs 1505
  • Pandya K. L. D., Hidalgo M., Cohen R., Lee M., Schiller J., Johnson D. A Randomized, Phase II ECOG Trial of Two Dose Levels of Temsirolimus in Patients with Extensive Stage Small Cell Lung Cancer in Remission after Induction Chemotherapy. A Preliminary Report. JCO 2005; 23(s16), Abs 7005
  • Duran I. L.L., Saltman D., Kortmansky J., Kocha W., Singh D., Pond G., Peralba J., Dancey J., Siu L. A Phase II Trial of Temsirolimus in Metastatic Neuroendocrine Carcinomas. JCO 2005; 23(s16), Abs 3096
  • Milton D. K.M., Azzoli C., Gomez J., Heelan R., Krug L., Pao W., Pizzo B., Rizvi N., Miller V. Phase I/II Trial of Gefitinib and RAD001 in Patients with Advanced Non-Small Cell Lung Cancer. JCO 2005; 23(s16), Abs 7104
  • Van Oosterom A. D.H., Desai J., Stroobants S., Van Den Abbeele A., Clement P., Shand N., Kovarik J., Tsyrlova A., Demetri G. Combination Signal Transduction Inhibition: A Phase I/II Trial of the Oral mTOR-Inhibitor Everolimus and Imatinib Mesylate (IM) in Patients with Gastrointestinal Stromal Tumor Refractory to IM. ASCO Proc 2004
  • Chow L. W., Sun Y., Jassem J., et al. Phase 3 study of temsirolimus with letrozole or letrozole alone in postmenopausal women with locally advanced or metastatic breast cancer. Breast Can Res Treat 2006; 100(S1), Abs 6091

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.