205
Views
46
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLESPreclinical Therapeutics

Combination Treatment of Human Umbilical Cord Matrix Stem Cell-Based Interferon-Beta Gene Therapy and 5-Fluorouracil Significantly Reduces Growth of Metastatic Human Breast Cancer in SCID Mouse Lungs

, , , , , , & show all
Pages 662-670 | Published online: 11 Jun 2009

REFERENCES

  • Dvorak H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl Med 1986; 315: 1650–1659
  • Natsu K., Ochi M., Mochizuki Y., Hachisuka H., Yanada S., Yasunaga Y. Allogeneic bone marrow-derived mesenchymal stromal cells promote the regeneration of injured skeletal muscle without differentiation into myofibers. Tissue Eng 2004; 10: 1093–1112
  • Rojas M., Xu J., Woods C. R., Mora A. L., Spears W., Roman J., et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 2005; 33: 145–152
  • Aboody K. S., Brown A., Rainov N. G., Bower K. A., Liu S., Yang W., et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97: 12846–12851
  • Brown A. B., Yang W., Schmidt N. O., Carroll R., Leishear K. K., Rainov N. G., et al. Intravascular delivery of neural stem cell lines to target intracranial and extracranial tumors of neural and non-neural origin. Hum Gene Ther 2003; 14: 1777–1785
  • Nakamura K., Ito Y., Kawano Y., Kurozumi K., Kobune M., Tsuda H., et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 2004; 11: 1155–1164
  • Studeny M., Marini F. C., Champlin R. E., Zompetta C., Fidler I. J., Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62: 3603–3608
  • Studeny M., Marini F. C., Dembinski J. L., Zompetta C., Cabreira-Hansen M., Bekele B. N., et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004; 96: 1593–1603
  • Mitchell K. E., Weiss M. L., Mitchell B. M., Martin P., Davis D., Morales L., et al. Matrix cells from Wharton's jelly form neurons and glia. Stem Cells 2003; 21: 50–60
  • Carlin R., Davis D., Weiss M., Schultz B., Troyer D. Expression of early transcription factors Oct4, Sox2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 2006; 4: 8
  • Weiss M. L., Medicetty S., Bledsoe A. R., Rachakatla R. S., Choi M., Merchav S., et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells 2006; 24: 781–792
  • Arnhold S., Klein H., Semkova I., Addicks K., Schraermeyer U. Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci 2004; 45: 4251–4255
  • Ishikawa T., Nakayama S., Nakagawa T., Horiguchi K., Misawa H., Kadowaki M., et al. Characterization of in vitro gutlike organ formed from mouse embryonic stem cells. Am J Physiol Cell Physiol 2004; 286: C1344–C1352
  • Thomson J. A., Marshall V. S. Primate embryonic stem cells. Curr Top Dev Biol 1998; 38: 133–165
  • Wakitani S., Takaoka K., Hattori T., Miyazawa N., Iwanaga T., Takeda S., et al. Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology (Oxford) 2003; 42: 162–165
  • Karahuseyinoglu S., Cinar O., Kilic E., Kara F., Akay G. G., Demiralp D. O., et al. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 2007; 25: 319–331
  • Rachakatla R. S., Marini F., Weiss M. L., Tamura M., Troyer D. Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors. Cancer Gene Ther 2007
  • Qin X. Q., Runkel L., Deck C., DeDios C., Barsoum J. Interferon-beta induces S phase accumulation selectively in human transformed cells. J Interferon Cytokine Res 1997; 17: 355–367
  • Qin X. Q., Tao N., Dergay A., Moy P., Fawell S., Davis A., et al. Interferon-beta gene therapy inhibits tumor formation and causes regression of established tumors in immune-deficient mice. Proc Natl Acad Sci USA 1998; 95: 14411–14416
  • Sidky Y. A., Borden E. C. Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res 1987; 47: 5155–5161
  • Singh R. K., Gutman M., Bucana C. D., Sanchez R., Llansa N., Fidler I. J. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc Natl Acad Sci USA 1995; 92: 4562–4566
  • Stark G. R., Kerr I. M., Williams B. R., Silverman R. H., Schreiber R. D. How cells respond to interferons. Ann Rev Biochem 1998; 67: 227–264
  • Douillard J. Y., Cunningham D., Roth A. D., Navarro M., James R. D., Karasek P., et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 2000; 355: 1041–1047
  • Choi E. A., Lei H., Maron D. J., Mick R., Barsoum J., Yu Q. C., et al. Combined 5-fluorouracil/systemic interferon-beta gene therapy results in long-term survival in mice with established colorectal liver metastases. Clin Cancer Res 2004; 10: 1535–1544
  • Koka V., Wang W., Huang X. R., Kim-Mitsuyama S., Truong L. D., Lan H. Y. Advanced glycation end products activate a chymase-dependent angiotensin II-generating pathway in diabetic complications. Circulation 2006; 113: 1353–1360
  • Richards A. B., Scheel T. A., Wang K., Henkemeyer M., Kromer L. F. EphB1 null mice exhibit neuronal loss in substantia nigra pars reticulata and spontaneous locomotor hyperactivity. Eur J Neurosci 2007; 25: 2619–2628
  • Klubes P., Cerna I. Use of uridine rescue to enhance the antitumor selectivity of 5-fluorouracil. Cancer Res 1983; 43: 3182–3186
  • Gresser I. Wherefore interferon?. J Leukoc Biol 1997; 61: 567–574
  • Morris A., Zvetkova I. Cytokine research: the interferon paradigm. J. Clin Pathol 1997; 50: 635–639
  • Wang B., Xiong Q., Shi Q., Le X., Abbruzzese J. L., Xie K. Intact nitric oxide synthase II gene is required for interferon-beta-mediated suppression of growth and metastasis of pancreatic adenocarcinoma. Cancer Res 2001; 61: 71–75
  • Kito M., Akao Y., Ohishi N., Yagi K. Induction of apoptosis in cultured colon cancer cells by transfection with human interferon beta gene. Biochem Biophys Res Commun 1999; 257: 771–776
  • Morrison B. H., Bauer J. A., Hu J., Grane R. W., Ozdemir A. M., Chawla-Sarkar M., et al. Inositol hexakisphosphate kinase 2 sensitizes ovarian carcinoma cells to multiple cancer therapeutics. Oncogene 2002; 21: 1882–1889
  • Leaman D. W., Chawla-Sarkar M., Vyas K., Reheman M., Tamai K., Toji S., et al. Identification of X–linked inhibitor of apoptosis-associated factor-1 as an interferon-stimulated gene that augments TRAIL Apo2L-induced apoptosis. J Biol Chem 2002; 277: 28504–28511
  • Hu G., Mancl M. E., Barnes B. J. Signaling through IFN regulatory factor-5 sensitizes p53-deficient tumors to DNA damage-induced apoptosis and cell death. Cancer Res 2005; 65: 7403–7412
  • Kuniyasu H., Yasui W., Kitahara K., Naka K., Yokozaki H., Akama Y., et al. Growth inhibitory effect of interferon-beta is associated with the induction of cyclin-dependent kinase inhibitor p27Kip1 in a human gastric carcinoma cell line. Cell Growth Differ 1997; 8: 47–52
  • Einat M., Resnitzky D., Kimchi A. Inhibitory effects of interferon on the expression of genes regulated by platelet-derived growth factor. Proc Natl Acad Sci USA 1985; 82: 7608–7612
  • Gibson D. F., Johnson D. A., Goldstein D., Langan-Fahey S. M., Borden E. C., Jordan V C. Human recombinant interferon-beta SER and tamoxifen: growth suppressive effects for the human breast carcinoma MCF-7 grown in the athymic mouse. Breast Cancer Res Treat 1993; 25: 141–150
  • Tlsty T. D., Hein P. W. Know thy neighbor: stromal cells can contribute oncogenic signals. Curr Opin Genet Dev 2001; 11: 54–59
  • van Kempen L. C., Ruiter D. J., van Muijen G. N., Coussens L. M. The tumor microenvironment: a critical determinant of neoplastic evolution. Eur J Cell Biol 2003; 82: 539–548
  • Nakamizo A., Marini F., Amano T., Khan A., Studeny M., Gumin J., et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65: 3307–3318
  • Kulbe H., Levinson N. R., Balkwill F., Wilson J. L. The chemokine network in cancer–much more than directing cell movement. Int J Dev Biol 2004; 48: 489–496
  • Cohenuram M., Saif M. W. Epidermal growth factor receptor inhibition strategies in pancreatic cancer: past, present and the future. J Pancreas 2007; 8: 4–15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.