326
Views
47
CrossRef citations to date
0
Altmetric
REVIEW

Current Status and Issues in Cancer Stem Cell Study

&
Pages 741-755 | Published online: 11 Jun 2009

REFERENCES

  • Reya T., Morrison S. J., Clarke M. F., Weissman I. L. Stem cells, cancer, and cancerstem cells. Nature 2001; 414: 105–111
  • Mackillop W. J., Ciampi A., Till J. E., Buick R. N. A stem cell model of human tumor growth, implications for tumor cell clonogenic assays. J Natl Cancer Inst 1983; 70: 9–16
  • Cotsarelis G., Kaur P., Dhouailly D., Hengge U., Bickenbach J. Epithelial stem cells in the skin, definition, markers, localization and functions. Exp Dermatol 1999; 8(1)80–88
  • Yilmaz O. H., Valdez R., Theisen B. K., Guo W., Ferguson D. O., et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441(7092)475–482
  • Soltysova A., Altanerova V., Altaner C. Cancer stem cells. Neoplasma 2005; 52(6)435–440
  • Nakagawara A., Ohira M. Comprehensive genomics linking between neural development and cancer, neuroblastoma as a model. Cancer Lett 2004; 204(2)213–224
  • Evans M. J., Kaufman M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292(5819)154–156
  • Blanpain C., Horsley V., Fuchs E. Epithelial stem cells, turning over new leaves. Cell 2007; 128(3)445–458
  • Potten C. S. Cell replacement in epidermis (keratopoiesis) via discrete units of proliferation. Int Rev Cytol 1981; 69: 271–318
  • Tudor D., Locke M., Owen-Jones E., Mackenzie I. C. Intrinsic patterns of behavior of epithelial stem cells. J Investig Dermatol Symp Proc 2004; 9(3)208–214
  • Pittenger M. F., Mackay A. M., Beck S. C., Jaiswal R. K., Douglas R., et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411)143–147
  • Potten C. S. Stem cells in gastrointestinal epithelium, numbers, characteristics and death. Philos Trans R Soc Lond B Biol Sci 1998; 353(1370)821–830
  • Marshman E., Booth C., Potten C. S. The intestinal epithelial stem cell. Bioessays 2002; 24(1)91–98
  • Alison M. R. Liver stem cells, implications for hepatocarcinogenesis. Stem Cell Rev 2005; 1(3)253–260
  • Oshima H., Rochat A., Kedzia C., Kobayashi K., Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 2001; 104(2)233–245
  • Blau H. M., Brazelton T. R., Weimann J. M. The evolving concept of a stem cell, entity or function?. Cell 2001; 105(7)829–841
  • Reya T., Morrison S. J., Clarke M. F., Weissman I L. Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859)105–111
  • Yin H., He Q., Li T., Leong A. S. Cytokeratin 20 and Ki-67 to distinguish carcinoma in situ from flat non-neoplastic urothelium. Appl Immunohistochem Mol Morphol 2006; 14(3)260–265
  • Lin Z., Kim H., Park H., Kim Y., Cheon J., et al. The expression of bcl-2 and bcl-6 protein in normal and malignant transitional epithelium. Urol Res 2003; 31(4)272–275
  • Patrawala L., Calhoun T., Schneider-Broussard R., Zhou J., Claypool K., et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2-cancer cells are similarly tumorigenic. Cancer Res Jul 15, 2005; 65(14)6207–6219
  • Bonnet D., Dick J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3(7)730–737
  • Zou G. M. Cancer stem cells in leukemia, recent advances. J Cell Physiol 2007; 213(2)440–444
  • Weissman I. L. The road ended up at stem cell. Immunol Rev 2002; 185: 159–174
  • Weissman I. L. Stem cells, units of development, units of regeneration, and units in evolution. Cell 2000; 100(1)157–168
  • Castor A., Nilsson L., Astrand-Grundström I., Buitenhuis M., Ramirez C., et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 2005; 11(6)630–637
  • Cobaleda C., Gutierrez-Cianca N., Perez-Losada J., Flores T., Garcia-Sanz R., et al. A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood 2000; 95(3)1007–1013
  • Lapidot T., Sirard C., Vormoor J., Murdoch B., Hoang T., et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367(6464)645–648
  • Singh S. K., Clarke I. D., Terasaki M., Bonn V. E., Hawkins C., et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63(18)5821–5828
  • Singh S. K., Hawkins C., Clarke I. D., Squire J. A., Bayani J., et al. Identification of human brain tumour initiating cells. Nature 2004; 432(7015)396–401
  • Taylor M. D., Poppleton H., Fuller C., Su X., Liu Y., et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 2005; 8(4)323–335
  • Al-Hajj M., Wicha M. S., Benito-Hernandez A., Morrison S. J., Clarke M. F. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7)3983–3988
  • Fang D., Nguyen T. K., Leishear K., Finko R., Kulp A. N., et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 2005; 65(20)9328–9337
  • Kim C. F., Jackson E. L., Woolfenden A. E., Lawrence S., Babar I., et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005; 121(6)823–835
  • Collins A. T., Berry P. A., Hyde C., Stower M. J., Maitland N J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65(23)10946–10951
  • Ricci-Vitiani L., Lombardi D. G., Pilozzi E., Biffoni M., Todaro M., et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445(7123)111–115
  • O'Brien C. A., Pollett A., Gallinger S., Dick J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445(7123)106–110
  • Gibbs C. P., Kukekov V. G., Reith J. D., Tchigrinova O., Suslov O. N., et al. Stem-like cells in bone sarcomas, implications for tumorigenesis. Neoplasia 2005; 7(11)967–976
  • Looijenga L. H., Stoop H., de Leeuw H. P., de Gouveia Brazao C. A., Gillis A. J., et al. POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res 2003; 63(9)2244–2250
  • Zhang F., Yan Q., Yan W., Cheng H., Hui Y., et al. Cancer is a disease of unregulated expansion of somatic stem cell resulting from disrupted asymmetric division. Med Hypotheses 2008; 70(1)208–209, Epub 2007 Jun 7
  • Kelly P. N., Dakic A., Adams J. M., Nutt S. L., Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science 2007; 317(5836)337
  • Ayyanan A., Civenni G., Ciarloni L., Morel C., Mueller N., et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc Natl Acad Sci USA 2006; 103(10)3799–3804
  • Knudson A. G., Strong L. C., Anderson D E. Heredity and cancer in man. Prog Med Genet 1973; 9: 113–158
  • Jamieson C. H., Ailles L. E., Dylla S. J., Muijtjens M., Jones C., et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351(7)657–667
  • Al-Hajj M., Clarke M. F. Self-renewal and solid tumor stem cells. Oncogene 2004; 23(43)7274–7282
  • Pardal R., Clarke M. F., Morrison S. J. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003; 3(12)895–902
  • Turhan A. G., Lemoine F. M., Debert C., Bonnet M. L., Baillou C., et al. Highly purified primitive hematopoietic stem cells are PML-RARA negative and generate nonclonal progenitors in acute promyelocytic leukemia. Blood 1995; 85(8)2154–2161
  • Brown D., Kogan S., Lagasse E., Weissman I., Alcalay M., et al. A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997; 94(6)2551–2556
  • Natrajan R., Little S. E., Sodha N., Reis-Filho J. S., Mackay A., et al. Analysis by array CGH of genomic changes associated with the progression or relapse of Wilms' tumour. J Pathol 2007; 211(1)52–59
  • Spink K. E., Polakis P., Weis W. I. Structural basis of the Axin-adenomatous polyposis coli interaction. EMBO J 2000; 19(10)2270–2279
  • Taipale J., Beachy P. A. The Hedgehog and Wnt signalling pathways in cancer. Nature 2001; 411(6835)349–354
  • Pongracz J. E., Stockley R. A. Wnt signalling in lung development and diseases. Respir Res 2006; 7: 15
  • Bhardwaj G., Murdoch B., Wu D., Baker D. P., Williams K. P., et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2001; 2(2)172–180
  • Kopper L., Hajdu M. Tumor stem cells–a possible scenario. Magy Onkol 2006; 50(2)101–106
  • Jacobs J. J., Kieboom K., Marino S., DePinho R. A., van Lohuizen M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999; 397(6715)164–168
  • Bracken A. P., Kleine-Kohlbrecher D., Dietrich N., Pasini D., Gargiulo G., et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 2007; 21(5)525–530
  • Park I. K., Qian D., Kiel M., Becker M. W., Pihalja M., et al. Bmi-1 is required for maintenance of adult self-renewaling haematopoietic stem cells. Nature 2003; 423(6937)302–305
  • Lessard J., Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003; 423(6937)255–260
  • Cui H., Hu B., Li T., Ma J., Alam G., et al. Bmi-1 is essential for the tumorigenicity of neuroblastoma cells. Am J Pathol 2007; 170(4)1370–1378
  • Molofsky A. V., Pardal R., Iwashita T., Park I. K., Clarke M. F., et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 2003; 425(6961)962–967
  • van der Lugt N. M., Domen J., Linders K., van Roon M., Robanus-Maandag E., et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev 1994; 8(7)757–769
  • Lawrence H. J., Rozenfeld S., Cruz C., Matsukuma K., Kwong A, et al. Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloidleukemias. Leukemia 1999; 13(12)1993–1999
  • Glinsky G. V., Berezovska O., Glinskii A. B. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 2005; 115(6)1503–1521
  • Bapat S. A. Evolution of cancer stem cells. Semin Cancer Biol 2007; 17(3)204–213
  • Su I. H., Basavaraj A., Krutchinsky A. N., Hobert O., Ullrich A., et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol 2003; 4(2)124–131
  • Berezovska O. P., Glinskii A. B., Yang Z., Li X. M., Hoffman R. M., et al. Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle 2006; 5(16)1886–1901
  • Reya T., Duncan A. W., Ailles L., Domen J., Scherer D. C., Willert K., et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423(6938)409–414
  • Pap M., Cooper G. M. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J Biol Chem 1998; 273(32)19929–19932
  • Brabletz T., Jung A., Reu S., Porzner M., Hlubek F., et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 2001; 98(18)10356–10361
  • Brabletz T., Jung A., Spaderna S., Hlubek F., Kirchner T. Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 2005; 5(9)744–749
  • Louvi A., Artavanis-Tsakonas S. Notch signalling in vertebrate neural development. Nat Rev Neurosci 2006; 7(2)93–102
  • Rand M. D., Grimm L. M., Artavanis-Tsakonas S., Patriub V., Blacklow S. C., et al. Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol 2000; 20(5)1825–1835
  • Chiba S. Notch signaling in stem cell systems. Stem Cells 2006; 24(11)2437–2447
  • Lai E. C. Notch signaling, control of cell communication and cell fate. Development 2004; 131(5)965–973
  • Rangarajan A., Talora C., Okuyama R., Nicolas M., Mammucari C., et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 2001; 20(13)3427–3436
  • Nguyen B. C., Lefort K., Mandinova A., Antonini D., Devgan V., et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev 2006; 20(8)1028–1042
  • Koch U., Radtke F. Notch and cancer: a double-edged sword. Cell Mol Life Sci 2007, Aug 11 [Epub ahead of print]
  • Nicolas M., Wolfer A., Raj K., Kummer J. A., Mill P., et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 2003; 33(3)416–421
  • Proweller A., Tu L., Lepore J. J., Cheng L., Lu M. M., et al. Impaired notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res 2006; 66(15)7438–7444
  • Weng A. P., Ferrando A. A., Lee W., Morris J. P., Silverman L. B., et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306(5694)269–271
  • Zhang Y., Kalderon D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 2001; 410(6828)599–604
  • Athar M., Tang X., Lee J. L., Kopelovich L., Kim A. L. Hedgehog signalling in skin development and cancer. Exp Dermatol 2006; 15(9)667–677
  • Hooper J. E., Scott M. P. Communicating with Hedgehogs. Nat Rev Mol Cell Biol 2005; 6(4)306–317
  • Wechsler-Reya R. J., Scott M. P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 1999; 22(1)103–114
  • Wechsler-Reya R., Scott M. P. The developmental biology of brain tumors. Annu Rev Neurosci 2001; 24: 385–428
  • Velcheti V. Hedgehog signaling is a potent regulator of angiogenesis in small cell lung cancer. Med Hypotheses 2007; 69(4)948–949
  • Anton Aparicio L. M., Garcia Campelo R., Cassinello Espinosa J., Valladares Ayerbes M., Reboredo Lopez M., et al. Prostate cancer and Hedgehog signalling pathway. Clin Transl Oncol 2007; 9(7)420–428
  • Chatel G., Ganeff C., Boussif N., Delacroix L., Briquet A., et al. Hedgehog signaling pathway is inactive in colorectal cancer cell lines. Int J Cancer 2007; 121(12)2622–2627
  • Costello R. T., Mallet F., Gaugler B., Sainty D., Arnoulet C., et al. Human acute myeloid leukemia CD34+/CD38-progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 2000; 60(16)4403–4411
  • Guzman M. L., Swiderski C. F., Howard D. S., Grimes B. A., Rossi R. M., et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 2002; 99(25)16220–16225
  • Matsui W., Huff C. A., Wang Q., Malehorn M. T., Barber J., et al. Characterization of clonogenic multiple myeloma cells. Blood. 2004; 103(6)2332–2336
  • Bao S., Wu Q., McLendon R. E., Hao Y., Shi Q., et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444(7120)687–688
  • Zhou S., Schuetz J. D., Bunting K. D., Colapietro A. M., Sampath J., et al. The A BC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7(9)1028–1034
  • Zhou S., Morris J. J., Barnes Y., Lan L., Schuetz J. D., et al. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci USA 2002; 99(19)12339–12344
  • Gottesman M. M., Fojo T., Bates S. E. Multidrug resistance in cancer, role of ATP-dependent transporters. Nat Rev Cancer 2002; 2(1)48–58
  • Wulf G. G., Wang R. Y., Kuehnle I., Weidner D., Marini F., et al. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood 2001; 98(4)1166–1173
  • Jin L., Hope K. J., Zhai Q., Smadja-Joffe F., Dick J. E. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12(10)1167–1174
  • Tabs S., Avci O. Induction of the differentiation and apoptosis of tumor cells in vivo with efficiency and selectivity. Eur J Dermatol 2004; 14(2)96–102
  • Jain M., Arvanitis C., Chu K., Dewey W., Leonhardt E., et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 2002; 297(5578)102–104
  • Flores I., Murphy D. J., Swigart L. B., Knies U., Evan G. I. Defining the temporal requirements for Myc in the progression and maintenance of skin neoplasia. Oncogene 2004; 23(35)5923–5930
  • Shachaf C. M., Kopelman A. M., Arvanitis C., Karlsson A., Beer S., et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 2004; 431(7012)1112–1117
  • Pelengaris S., Abouna S., Cheung L., Ifandi V., Zervou S., et al. Brief inactivation of c-Myc is not sufficient for sustained regression of c-Myc-induced tumours of pancreatic islets and skin epidermis. BMC Biol 2004; 2: 26
  • Andersen M. S., Sorensen C. B., Bolund L., Jensen T. G. Mechanisms underlying targeted gene correction using chimeric RNA/DNA and single-stranded DNA oligonucleotides. J Mol Med 2002; 80(12)770–781
  • Kosmaczewska A., Ciszak L., Suwalska K., Wolowiec D., Frydecka I. CTLA-4 overexpression in CD19+/CD5+ cells correlates with the level of cell cycle regulators and disease progression in B-CLL patients. Leukemia 2005; 19(2)301–304
  • Mongini P. K., Jackson A. E., Tolani S., Fattah R. J., Inman J. K. Role of complement-binding CD21/CD19/CD81 in enhancing human B cell protection from Fas-mediated apoptosis. J Immunol 2003; 171(10)5244–5254
  • Ramalingam P., Rybicki L., Smith M. D., Abrahams N. A., Tubbs R. R., et al. Posttransplant lymphoproliferative disorders in lung transplant patients, the Cleveland Clinic experience. Mod Pathol 2002; 15(6)647–656
  • Surowiak P., Materna V., Györffy B., Matkowski R., Wojnar A., et al. Multivariate analysis of oestrogen receptor alpha, pS2, metallothionein and CD24 expression in invasive breast cancers. Br J Cancer 2006; 95(3)339–346
  • Surowiak P., Materna V., Kaplenko I., Spaczyński M., Dietel M., et al. Unfavorable prognostic value of CD24 expression in sections from primary and relapsed ovarian cancer tissue. Int J Gynecol Cancer 2006; 16(2)515–521
  • Weichert W., Denkert C., Burkhardt M., Gansukh T., Bellach J., et al. Cytoplasmic CD24 expression in colorectal cancer independently correlates with shortened patient survival. Clin Cancer Res 2005; 11(18)6574–6581
  • Lim S. C., Oh S. H. The role of CD24 in various human epithelial neoplasias. Pathol Res Pract 2005; 201(7)479–486
  • Kristiansen G., Schlüns K., Yongwei Y., Denkert C., Dietel M., et al. CD24 is an independent prognostic marker of survival in nonsmall cell lung cancer patients. Br J Cancer 2003; 88(2)231–236
  • Schindelmann S., Windisch J., Grundmann R., Kreienberg R., Zeillinger R., et al. Expression profiling of mammary carcinoma cell lines, correlation of in vitro invasiveness with expression of CD24. Tumour Biol 2002; 23(3)139–145
  • Silva-Filho A. L., Traiman P., Triginelli S. A., Reis F. M., Pedrosa M. S., et al. Association between CD31 expression and histopathologic features in stage IB squamous cell carcinoma of the cervix. Int J Gynecol Cancer 2006; 16(2)757–762
  • Righi L., Deaglio S., Pecchioni C., Gregorini A., Horenstein A. L., et al. Role of CD31/platelet endothelial cell adhesion molecule-1 expression in in vitro and in vivo growth and differentiation of human breast cancer cells. Am J Pathol 2003; 162(4)1163–1174
  • Dales J. P., Garcia S., Carpentier S., Andrac L., Ramuz O., et al. Long-term prognostic significance of neoangiogenesis in breast carcinomas, comparison of Tie-2/Tek, CD105, and CD31 immunocytochemical expression. Hum Pathol 2004; 35(2)176–183
  • Vieira S. C., Silva B. B., Pinto G. A., Vassallo J., Moraes N. G., et al. CD34 as a marker for evaluating angiogenesis in cervical cancer. Pathol Res Pract 2005; 201(4)313–318
  • Hayat A., O'Brien D., O'Rourke P., McGuckin S., Fitzgerald T., et al. CD38 expression level and pattern of expression remains a reliable and robust marker of progressive disease in chronic lymphocytic leukemia. Leuk Lymphoma 2006; 47(11)2371–2379
  • Boonstra J. G., van Lom K., Langerak A. W., Graveland W. J., Valk P. J., et al. CD38 as a prognostic factor in B cell chronic lymphocytic leukaemia, (B-CLL), comparison of three approaches to analyze its expression. Cytometry B Clin Cytom 2006; 70(3)136–141
  • Desai B., Rogers M. J., Chellaiah M. A. Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells. Mol Cancer 2007; 6: 18
  • Napier S. L., Healy Z. R., Schnaar R. L., Konstantopoulos K. Selectin ligand expression regulates the initial vascular interactions of colon carcinoma cells, the roles of CD44v and alternative sialofucosylated selectin ligands. J Biol Chem 2007; 282(6)3433–3441
  • Bourguignon L. Y., Peyrollier K., Gilad E., Brightman A. Hyaluronan-CD44 interaction with neural Wiskott-Aldrich syndrome protein, (N-WASP) promotes actin polymerization and ErbB2 activation leading to beta-catenin nuclear translocation, transcriptional up-regulation, and cell migration in ovarian tumor cells. J Biol Chem 2007; 282(2)1265–1280
  • Carvalho R., Milne A. N., Polak M., Offerhaus G. J., Weterman M. A. A novel region of amplification at 11p12-13 in gastric cancer, revealed by representational difference analysis, is associated with overexpression of CD44v6, especially in early-onset gastric carcinomas. Genes Chromosomes Cancer 2006; 45(10)967–975
  • Bourguignon L. Y., Gilad E., Brightman A., Diedrich F., Singleton P. Hyaluronan-CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase C epsilon-Ca2+ signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells. J Biol Chem 2006; 281(20)14026–14040
  • Bouda J., Boudova L., Hes O., Havir M., Tempfer C., et al. CD44v6 as a prognostic factor in cervical carcinoma FIGO stage IB. Anticancer Res 2005; 25(1B)617–622
  • Hirohashi K., Yamamoto T., Uenishi T., Ogawa M., Sakabe K., et al. CD44 and VEGF expression in extrahepatic metastasis of human hepatocellular carcinoma. Hepatogastroenterology 2004; 51(58)1121–1123
  • Dales J. P., Garcia S., Andrac L., Carpentier S., Ramuz O., et al. Prognostic significance of angiogenesis evaluated by CD105 expression compared to CD31 in 905 breast carcinomas, correlation with long-term patient outcome. Int J Oncol 2004; 24(5)1197–1204
  • Li C., Gardy R., Seon B. K., Duff S. E., Abdalla S., et al. Both high intratumoral microvessel density determined using CD105 antibody and elevated plasma levels of CD105 in colorectal cancer patients correlate with poor prognosis. Br J Cancer 2003; 88(9)1424–1431
  • Wikström P., Lissbrant I. F., Stattin P., Egevad L., Bergh A. Endoglin, (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate 2002; 51(4)268–275
  • Araki K., Ishii G., Yokose T., Nagai K., Funai K., et al. Frequent overexpression of the c-kit protein in large cell neuroendocrine carcinoma of the lung. Lung Cancer 2003; 40(2)173–180
  • Sakuma Y., Sakurai S., Oguni S., Hironaka M., Saito K. Alterations of the c-kit gene in testicular germ cell tumors. Cancer Sci 2003; 94(6)486–491
  • Erdogan G., Bassorgun C. I., Pestereli H. E., Simsek T., Karaveli S. C-kit protein expression in uterine and ovarian mesenchymal tumours. APMIS 2007; 115(3)204–209
  • Cho S., Kitadai Y., Yoshida S., Tanaka S., Yoshihara M., et al. Deletion of the KIT gene is associated with liver metastasis and poor prognosis in patients with gastrointestinal stromal tumor in the stomach. Int J Oncol 2006; 28(6)1361–1367
  • Diallo R., Rody A., Jackisch C., Ting E., Schaefer K. L., et al. C-KIT expression in ductal carcinoma in situ of the breast, co-expression with HER-2/neu. Hum Pathol 2006; 37(2)205–211
  • Tamborini E., Bonadiman L., Negri T., Greco A., Staurengo S., et al. Detection of overexpressed and phosphorylated wild-type kit receptor in surgical specimens of small cell lung cancer. Clin Cancer Res 2004; 10(24)8214–8219
  • Uccini S., Mannarino O., McDowell H. P., Pauser U., Vitali R., et al. Clinical and molecular evidence for c-kit receptor as a therapeutic target in neuroblastic tumors. Clin Cancer Res 2005; 11(1)380–389
  • Chung C. Y., Yeh K. T., Hsu N. C., Chang J. H., Lin J. T., et al. Expression of c-kit protooncogene in human hepatocellular carcinoma. Cancer Lett 2005; 217(2)231–236
  • Tse G. M., Putti T. C., Lui P. C., Lo Scolyer A. W., et al. Increased c-kit, (CD117) expression in malignant mammary phyllodes tumors. Mod Pathol 2004; 17(7)827–831
  • Potti A., Moazzam N., Langness E., Sholes K., Tendulkar K., et al. Immunohistochemical determination of HER-2/neu, c-Kit, (CD117), and vascular endothelial growth factor, (VEGF) overexpression in malignant melanoma. J Cancer Res Clin Oncol 2004; 130(2)80–86
  • Testa U., Riccioni R., Diverio D., Rossini A., Lo Coco F., et al. Interleukin-3 receptor in acute leukemia. Leukemia 2004; 18(2)219–226
  • Dentelli P., Rosso A., Garbarino G., Calvi C., Lombard E., et al. The interaction between KDR and interleukin-3 receptor, (IL-3R) beta common modulates tumor neovascularization. Oncogene 2005; 24(42)6394–6405
  • Florek M., Haase M., Marzesco A. M., Freund D., Ehninger G., et al. Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res 2005; 319(1)15–26
  • Mehra N., Penning M., Maas J., Beerepoot L. V., van Daal N., et al. Progenitor marker CD133 mRNA is elevated in peripheral blood of cancer patients with bone metastases. Clin Cancer Res 2006; 12(16)4859–4866
  • Hemmoranta H., Hautaniemi S., Niemi J., Nicorici D., Laine J., et al. Transcriptional profiling reflects shared and unique characters for CD34+ and CD133+ cells. Stem Cells Dev 2006; 15(6)839–851
  • Das A. V., Mallya K. B., Zhao X., Ahmad F., Bhattacharya S., et al. Neural stem cell properties of Muller glia in the mammalian retina, regulation by Notch and Wnt signaling. Dev Biol 2006; 299(1)283–302
  • Xu H. T., Wei Q., Liu Y., Yang L. H., Dai S. D., et al. Overexpression of Axin Downregulates TCF-4 and Inhibits the Development of Lung Cancer. Ann Surg Oncol 2007; 14(11)3251–3259
  • Cowling V. H., Cole M. D. Turning the Tables, Myc Activates Wnt in Breast Cancer. Cell Cycle 2007; 6(21)2625–2627
  • Kim J. B., Leucht P., Lam K., Luppen C., Ten Berge D., et al. Bone Regeneration is Regulated by Wnt Signaling. J Bone Miner Res 2007; 22(12)1913–1923
  • Zhu AJ., Watt F. M. beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development 1999; 126(10)2285–2298
  • Korinek V., Barker N., Moerer P., van Donselaar E., Huls G., et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 1998; 19(4)379–383
  • Polakis P. Wnt signaling and cancer. Genes Dev 2000; 14(15)1837–1851
  • Chan E. F., Gat U., McNiff J. M., Fuchs E. A common human skin tumour is caused by activating mutations in beta-catenin. Nat Genet 1999; 21(4)410–413
  • Chiba T., Zheng Y. W., Kita K., Yokosuka O., Saisho H., et al. Enhanced Self-renewal Capability in Hepatic Stem/Progenitor Cells Drives Cancer Initiation. Gastroenterology 2007; 133(3)937–950
  • Hooper C., Chapple J. P., Lovestone S., Killick R. The Notch-1 intracellular domain is found in sub-nuclear bodies in SH-SY5Y neuroblastomas and in primary cortical neurons. Neurosci Lett 2007; 415(2)135–139
  • Efstratiadis A., Szabolcs M., Klinakis A. Notch, Myc and breast cancer. Cell Cycle 2007; 6(4)418–429
  • Sharma V. M., Draheim K. M., Kelliher M. A. The Notch1/c-Myc pathway in T cell leukemia. Cell Cycle 2007; 6(8)927–930
  • Varnum-Finney B., Xu L., Brashem-Stein C., Nourigat C., Flowers D., et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 2000; 6(11)1278–1281
  • Mizutani K. I., Yoon K., Dang L., Tokunaga A., Gaiano N. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 2007; 449(7160)351–355
  • Kimble J., Crittenden S. L. Control of Germline Stem Cells, Entry into Meiosis, and the Sperm/Oocyte Decision in C. elegans. Annu Rev Cell Dev Biol 2007; 23: 405–433
  • Ellisen L. W., Bird J., West D. C., Soreng A. L., Reynolds T. C., et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66(4)649–661
  • Conboy I. M., Conboy M. J., Smythe G. M., Rando T. A. Notch-mediated restoration of regenerative potential to aged muscle. Science 2003; 302(5650)1575–1577
  • Crosnier C., Stamataki D., Lewis J. Organizing cell renewal in the intestine, stem cells, signals and combinatorial control. Nat Rev Genet 2006; 7(5)349–359
  • Wang L., Qin H., Chen B., Xin X., Li J., et al. Overexpressed active Notch1 induces cell growth arrest of HeLa cervical carcinoma cells. Int J Gynecol Cancer 2007; 17(6)1283–1292
  • Vonlanthen S., Heighway J., Altermatt H. J., Gugger M., Kappeler A., et al. The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br J Cancer 2001; 84(10)1372–1376
  • van Galen J. C., Muris J. J., Oudejans J. J., Vos W., Giroth C. P., et al. Expression of the polycomb-group gene BMI1 is related to an unfavourable prognosis in primary nodal DLBCL. J Clin Pathol 2007; 60(2)167–172
  • Shi Y., Sun G., Zhao C., Stewart R. Neural stem cell self-renewal. Crit Rev Oncol Hematol 2008; 65(1)43–53, Epub 2007 Jul 23
  • Claudinot S., Nicolas M., Oshima H., Rochat A., Barrandon Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc Natl Acad Sci USA 2005; 102(41)14677–14682
  • Reinisch C., Kandutsch S., Uthman A., Pammer J. BMI-1, a protein expressed in stem cells, specialized cells and tumors of the gastrointestinal tract. Histol Histopathol 2006; 21(11)1143–1149
  • van Leenders G. J., Dukers D., Hessels D., van den Kieboom S. W., Hulsbergen C. A., et al. Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur Urol 2007; 52(2)455–463
  • Kim J. H., Yoon S. Y., Jeong S. H., Kim S. Y., Moon S. K., et al. Overexpression of Bmi-1 oncoprotein correlates with axillary lymph node metastases in invasive ductal breast cancer. Breast 2004; 13(5)383–388
  • Marker P. C. PTEN deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Urol Oncol 2007; 25(3)277
  • He X. C., Yin T., Grindley J. C., Tian Q., Sato T., et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet 2007; 39(2)189–198

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.