5
Views
0
CrossRef citations to date
0
Altmetric
Original Article

An Overview of the Human Interleukin-2 Receptor: Molecular, Biochemical, and Functional Properties

Pages 369-376 | Published online: 24 Mar 2010

References

  • Smith K. A. T-cell growth factor. Immunol Rev 1980; 51: 337–357
  • Greene W. C., Robb R. J. Receptors for T-cell growth factor: Structure, function and expression on normal and neoplastic cells. Contemporary Topics in Molecular Immunology, S. Gillis, R. P. Inman. Plenum Press, New York 1985; Vol. 10: 1–34
  • Greene W. C., Leonard W. J., Depper J. M. Growth of human T lymphocytes: An analysis of interleukin-2 and its cellular receptor. Progress in Hematology, E. Brown. Grune and Stratton, Orlando, FL 1985; Vol. XIV: 283–301
  • Uchiyama T., Broder S., Waldmann T. A. A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. J Immunol 1981; 126: 1393–1397
  • Leonard W. J., Depper J. M., Uchiyama T. L., et al. A monoclonal antibody that appears to recognize the receptor for human T-cell growth factor; partial characterization of the receptor. Nature 1982; 300: 267–269
  • Miyawaki T. A., Yachie A., Uwandana N., et al. Functional significance of Tac antigen expressed on activated human T lymphocytes: Tac antigen interacts with T cell growth factor in cellular proliferation. J Immunol 1982; 129: 2474–2478
  • Robb R. J., Greene W. C. Direct demonstration of the identity of T cell growth factor binding protein and the Tac antigen. J Exp Med 1983; 158: 1332–1337
  • Leonard W. J., Depper J. M., Robb R. J., et al. Characterization of the human receptor of T cell growth factor. Proc Natl Acad Sci (USA) 1983; 80: 6957–6961
  • Leonard W. J., Depper J. M., Kronke M., et al. The human receptor for T-cell growth factor: Evidence for variable post translational processing, phosphorylation, sulfation and the ability of precursor forms of the receptor to bind T-cell growth factor. J Biol Chem 1985; 260: 1872–1880
  • Wano Y., Uchiyama T., Fukui K., et al. Characterization of human interleukin 2 receptor (Tac antigen) in normal and leukemic T cells: Co-expression of normal and aberrant receptors in HUT 102 cells. J Immunol 1984; 132: 3005–3010
  • Leonard W. J., Depper J. M., Crabtree G. R., et al. Molecular cloning and expression of cDNAs for the human interleukin-2 receptor. Nature 1984; 311: 626–631
  • Nikaido T., Shimizu A., Ishida N., et al. Molecular cloning of cDNA encoding human interleukin 2 receptor. Nature 1984; 311: 631–635
  • Cosman D., Cerratti D. P., Larsen A., et al. Cloning, sequence and expression of human interleukin 2 receptor. Nature 1984; 321: 768–771
  • Leonard W. J., Depper J. M., Kanehisa M., et al. Structure of the human interleukin-2 receptor gene. Science 1985; 230: 633–639
  • Leonard W. J., Donlan T. A., Lebo R. V., Greene W. C. Localization of the gene encoding the human interleukin-2 receptor on chromosome 10. Science 1985; 228: 1547–1549
  • Depper J. M., Leonard W. J., Kronke M., et al. Augmented T cell growth factor receptor expression in HTLV-1-infected leukemic T cells. J Immunol 1984; 133: 1691–1695
  • Kronke M., Leonard W. J., Depper J. M., Greene W. C. Deregulation of interleukin receptor gene expression in HTLV-1 induced adult T cell leukemia. Science 1985; 228: 1215–1217
  • Miller J., Malek T. R., Leonard W. J., et al. Nucleotide sequence and expression of a mouse interleukin 2 receptor cDNA. J Immunol 1985; 134: 4212–4217
  • Yamamoto T., Davis C. G., Brown M. S., et al. The human LDL receptor: A cysteine rich protein with multiple Alu sequences in its mRNA. Cell 1984; 39: 27–38
  • Leonard W. J., Kronke M., Peffer N. J., et al. Interleukin 2 receptor gene expression in normal human T lymphocytes. Proc Natl Acad Sci (USA) 1985; 82: 6281–6285
  • Treiger B., Leonard W. J., Svetlik P., et al. A secreted form of the human interleukin-2 receptor encoded by an “anchor minus” cDNA mutant. J Immunol 1986; 1136: 4099–4105
  • Schackleford D. A., Trowbridge I. S. Induction of expression and phosphorylation of the human interleukin 2 receptor by a phorbol diester. J Biol Chem 1984; 259: 11706–11712
  • Robb R. J., Munck A. J., Smith K. A. T-cell growth factor receptors: Quantification, specificity, and biological relevance. J Exp Med 1981; 154: 1455–1474
  • Depper J. M., Leonard W. J., Kronke M., et al. Regulation of interleukin 2 receptor expession: Effects of phorbol diester, phospholipase C, and reexposure to lectin and antigen. J Immunol 1984; 133: 3054–3061
  • Robb R. J., Greene W. C., Rusk C. M. Low and high affinity cellular receptors for interleukin 2. Implications for the level of Tac antigen. J Exp Med 1984; 160: 1126–1146
  • Lowenthal J. W., Zubler R. H., Nabholz M., MacDonald H. R. Similarities between interleukin-2 receptor number and affinity on activated B and T lymphocytes. Nature 1985; 315: 669–671
  • Weissman A. M., Harford J. B., Svetlik P. B., et al. Only high affinity receptors for interleukin-2 mediate internalization of ligand. Proc Natl Acad Sci (USA) 1986; 83: 1463–1466
  • Fujii M., Sugamura K., Sano K., et al. High affinity receptor mediated internalization and degradation of interleukin-2 in human T cells. J Exp Med 1986; 163: 550–562
  • Greene W. C., Robb R. J., Svetlik P. B., et al. Stable expression of cDNA encoding the human interleukin-2 receptor in eukaryotic cells. J Exp Med 1985; 162: 263–368
  • Sabe H., Kondo S., Shimizu A., et al. Properties of human interleukin-2 receptors expressed on nonlymphoid cells by cDNA transfection. Mol Biol Med 1984; 2: 379–396
  • Hatakeyama M., Minamoto S., Uchiyama T., et al. Reconstitution of functional receptor for human interleukin-2 in mouse cells. Nature 1985; 318: 467–470
  • Kondo S., Shimizu A., Maeda M., et al. Expression of functional human interleukin-2 receptor in mouse T cells by cDNA transfection. Nature 1986; 320: 75–77
  • Wano Y., Cullen B. R., Svetlik P., et al. Reconstitution of high affinity IL-2 receptor expression in a human T cell line using a retroviral cDNA expression vector. Mol Biol Med
  • Robb R. J. Conversion of low-affinity interleukin 2 receptors to a high-affinity state following fusion of cell membranes. Proc Natl Acad Sci (USA) 1986; 83: 3992–3996
  • Kuo L. M., Rusk C. M., Robb R. J. Structure-function relationships for the IL-2-receptor system. II. Localization of an IL 2 binding site on high and low affinity receptors. J Immunol 1986; 137: 1544–1551
  • Sharon M., Klausner R. D., Cullen B. R., et al. Novel interleukin-2 receptor subunit detected by cross linking under high affinity conditions. Science 1986; 234: 859–863
  • Tsudo M., Kozak R. W., Goldman C. K., Waldmann T. A. Demonstration of a non-Tac peptide that binds interleukin-2: A potential participant in a multichain interleukin-2 receptor complex. Proc Natl Acad Sci (USA) 1986; 83: 9694–9698
  • Teshigawara K., Wang H. M., Kato K., Smith K. A. Interleukin-2 high affinity receptor expression requires two distinct binding proteins. J Exp Med 1987; 165: 223–238
  • Robb R. J., Rusk C. M., Yodoi J., Greene W. C. An interleukin-2 binding molecule distinct from the Tac protein: analysis of its role in formation of high affinity receptors. Proc Natl Acad Sci (USA) 1987; 84: 2002–2006
  • Dukovich M., Yano Y., Bich-Thuy Lethi, et al. Identification of a second human IL-2 binding protein and its possible role in the assembly of the high affinity IL-2 receptor complex. Nature 1987; 327: 518–522
  • Robb R. J., Greene W. C. Internalization of IL-2 is mediated by the beta chain of the high affinity IL-2 receptor. J Exp Med 1987; 165: 1201–1206
  • Le thi Bich-Thuy Dukovich M., Peffer N. J., et al. Direct activation of human T cells by IL-2: The role of an IL-2 receptor distinct from the Tac protein. J Immunol
  • Poiesz B. J., Ruscetti F. W., Gazdar A. F., et al. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T cell lymphoma. Proc Natl Acad Sci (USA) 1980; 77: 7415–7419
  • Poiesz B. J., Ruscetti F. W., Reitz M. S., et al. Isolation of a new type C retrovirus (HTLV) in primary uncultured cells of the patients with Se'zary T cell leukemia. Nature 1981; 294: 268–271
  • Yoshida M., Miyoshi I., Hinuma Y. Isolation and characterization of retrovirus from cell lines of human adult T cell leukemia and its implication in disease. Proc Nad Acad Sci (USA) 1982; 79: 2031–2031
  • Uchiyama T., Yodoi J., Sagawa K., et al. Adult T cell leukemia: Clinical and hematologic features of 16 cases. Blood 1977; 50: 481–492
  • Bunn P. A., Schechter G. P., Jaffe E., et al. Clinical course of retrovirus associated adult T cell lymphoma in the United States. N Engl J Med 1983; 309: 257–264
  • Waldmann T. A., Greene W. C., Sarin P. S., et al. Functional and phenotypic comparison of human T cell leukemia/lymphoma virus positive adult T cell leukemia with human T cell leukemia/lymphoma virus negative Sézary leukemia. J Clin Invest 1984; 73: 1711–1718
  • Gootenberg J. E., Ruscetti F. W., Mier J. W., et al. Human cutaneous T cell lymphoma and leukemia cell lines produce and respond to T cell growth factor. J Exp Med 1981; 154: 1403–1417
  • Arya S. K., Wong-Stall F., Gallo R. C. T-cell growth factor gene: Lack of expression in human T cell leukemia-lymphoma virus infected cells. Science 1984; 223: 1086–1087
  • Efrat S., Kaempfer R. Control of biologically active interleukin 2 messenger RNA formation in induced human lymphocytes. Proc Natl Acad Sci (USA) 1984; 81: 2601–2605
  • Seiki M., Hattori S., Hirayama Y., Yoshida M. Human adult T cell leukemia virus: Complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci (USA) 1983; 80: 3618–3622
  • Seiki M., Eddy R., Shows T., Yoshida M. Nonspecific integration of HTLV provirus genome into adult T-cell leukemia cells. Nature 1984; 3098: 640–642
  • Haseltine W. A., Sodroski J., Patarca R., et al. Structure of the 3′ terminal repeat region of type II human T lymphotropic virus: Evidence for a new coding region. Science 1984; 225: 419–421
  • Kiyokawa T., Seiki M., Imagawa K., et al. Identification of a protein (p40x) encoded by a unique sequence pX of human T cell leukemia virus type I. Gann 1984; 75: 745–751
  • Shimotohno K., Miwa M., Glamon D., et al. Identification of new gene products encoded from X regions of human T cell leukemia viruses. Proc Natl Acad Sci (USA) 1985; 82: 302–305
  • Seiki M., Hikkoshi A., Taniguchi T., Yoshida M. Expression of the pX gene of HTLV-I: General splicing mechanism in the HTLV family. Science 1985; 228: 1532–1534
  • Wachsman W., Gold D. W., Temple P. A., et al. HTLV-X gene product: Requirement for the env methionine initiation codon. Science 1985; 228: 1534–1537
  • Sodroski J. G., Rosen C. A., Haseltine W. A. Trans-acting transcriptional activation of the long terminal repeat of human T lymphotropic viruses in infected cells. Science 1984; 225: 381–385
  • Inoue J., Seiki M., Taniguchi T., et al. Induction of interleukin-2 receptor gene expression by p40x encoded by human T cell leukemia virus-type 1. EMBO J 1986; 5: 2883–2888
  • Siekevitz M., Feinberg M. B., Holbrook N., et al. Activation of interleukin-2 and interleukin-2 receptor promoter expression by the transactivator (tat) gene product of HTLV-I. Proc Natl Acad Sci (USA)
  • Maruyama M., Shibuya H., Harada H., et al. Evidence for aberrant activation of the interleukin-2 autocrine loop by HTLV-I encoded p40x and T3-Ti complex triggering. Cell 1987; 48: 343–350
  • Cross S. L., Feinberg M. B., Wolf J. B., et al. Regulation of human interleukin-2 receptor of chain promoter: activation of a nonfunctional promoter by the transactivator gene of HTLV-I. Cell 1987; 49: 47–56
  • Krönke M., Depper J. M., Leonard W. J., et al. Adult T cell leukemia: A potential target for ricin A chain immunotoxins. Blood 1985; 65: 1416–1421
  • FitzGerald D., Waldmann T. A., Willingham M. C., Paston I. Pseudomonas extoxin-anti-Tac cell specific immunotoxin, active against cells expressing the T-cell growth factor receptor. J Clin Invest 1984; 74: 966–973

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.