1,828
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Guided Inquiry into a Physics Equation

ORCID Icon &

References

  • Abelson, R. P. (1981). Psychological status of the script concept. American Psychologist, 36(7), 715–729. https://doi.org/10.1037/0003-066X.36.7.715
  • ACHERET (2005). ACHERET Center. Retrieved November 28, 2019, from https://www.acheret.org.il/
  • Barab, S. A., & Hay, K. E. (2001). Doing science at the elbows of experts: Issues related to the science apprenticeship camp. Journal of Research in Science Teaching, 38(1), 70–102. https://doi.org/10.1002/1098-2736(200101)38:1<70::AID-TEA5>3.0.CO;2-L
  • Basaraba, D., Yovanoff, P., Alonzo, J., & Tindal, G. (2013). Examining the structure of reading comprehension: Do literal, inferential, and evaluative comprehension truly exist? Reading and Writing, 26(3), 349–379. https://doi.org/10.1007/s11145-012-9372-9
  • Bing, T. J., & Redish, E. F. (2007). The cognitive blending of mathematics and physics knowledge. In AIP Conference Proceedings (Vol. 883, pp. 26–29). AIP. https://doi.org/10.1063/1.2508683
  • Bruner, J. S. (1986). Actual minds, possible worlds. Harvard University Press.
  • Cohn, A., & Cohn Snir, O. (2019). Action and thought in research-based science education: Dialogues on research and discovery in science and mathematics, construction and development of creative scientific projects (title translated from Hebrew). Mofet Institute.
  • Cohn, A., & Trumper, R. (2019). The “Acheret” Center and “Archimedes Fulcrum” Academy: An innovative model for project-based learning of physics. Action Research and Innovation in Science Education, 2(2), 23–25. https://doi.org/10.51724/arise.24
  • Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser (pp. 32–42). Erlbaum.
  • Collins, A., & Ferguson, W. (1993). Epistemic forms and epistemic games: Structures and strategies to guide inquiry. Educational Psychologist, 28(1), 25–42. https://doi.org/10.1207/s15326985ep2801_3
  • Dirac, P. A. M. (1984). The future of atomic physics. International Journal of Theoretical Physics, 23(8), 677–681. https://doi.org/10.1007/BF02214096
  • diSessa, A. A. (2002). Why “conceptual ecology” is a good idea. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change. Issues in thoery and practice (pp. 29–60). Kluer Academic Publishers.
  • diSessa, A. A., Abelson, H., & Ploger, D. (1991). An overview of Boxer. Journal of Mathematical Behavior, 10(1), 3–15.
  • diSessa, A. A., Levin, M., & Brown, N. (2015). Knowledge and interaction: A synthetic agenda for the learning sciences. Routledge.
  • diSessa, A. A., & Sherin, B. L. (1998). What changes in conceptual change? International Journal of Science Education, 20(10), 1155–1191. https://doi.org/10.1080/0950069980201002
  • diSessa, A. A., & Wagner, J. F. (2005). What coordination has to say about transfer. In J. Mestre (Ed.), Transfer of learning from a modern multi-disciplinary perspective (pp. 121–154). Information Age Publishing.
  • Einstein, A. (1934). On the method of theoretical physics. Philosophy of Science, 1(2), 163–169. https://doi.org/10.1086/286316
  • Faraj, S., Cohn, A., & Kapon, S. (2021). The figured world of guiding authentic inquiry in physics at high school. In The European Science Education Research Association (ESERA) Biannual Conference.
  • Fauconnier, G., & Turner, M. (1996). Blending as a central process of grammar. In A. Goldberg (Ed.), Conceptual structure, discourse, and language (pp. 1113–1130). CSLI Publications.
  • Fischbein, E. (1987). Intuition in science and mathematics: An educational approach. Reidel.
  • Gee, J. P. (2002). Literacies, identities, and discourses. In M. J. Schleppegrell & M. C. Colombi (Eds.), Developing advanced literacy in first and second languages: Meaning with power (pp. 159–175). Routledge.
  • Gee, J. P. (2018). Reading as situated language: A sociocognitive perspective. In D. E. Alvermann, N. J. Unrau, M. Sailors, & R. B. Ruddell (Eds.), Theoretical models and processes of literacy (pp. 105–117). Routledge.
  • Gerrig, R. J. (1993). Experiencing narrative worlds: on the psychological activities of reading. Yale University Press.
  • Gingras, Y. (2001). What did mathematics do to physics? History of Science, 39(4), 383–416. https://doi.org/10.1177/007327530103900401
  • Gluck, P. (2015). News: An initiative for high school projects. Physics Education, 50(2), 133–134.
  • Goodwin, C. (2007a). Environmentally coupled gestures. In S. Duncan, J. Cassell, & E. Levy (Eds.), Gesture and the dynamic dimensions of language (pp. 195–212). John Benjamins.
  • Goodwin, C. (2007b). Participation, stance and affect in the organization of activities. Discourse & Society, 18(1), 53–73. https://doi.org/10.1177/0957926507069457
  • Greeno, J. G. (2013). A situative perspective on cognition and learning in interaction. In T. Koschmann (Ed.), Theories of learning and studies of instructional practice (pp. 41–71). Springer.
  • Gregorcic, B., Planinsic, G., & Etkina, E. (2017). Doing science by waving hands: Talk, symbiotic gesture, and interaction with digital content as resources in student inquiry. Physical Review Physics Education Research, 13(2), 020104. https://doi.org/10.1103/PhysRevPhysEducRes.13.020104
  • Gupta, A., & Elby, A. (2011). Beyond epistemological deficits: Dynamic explanations of engineering students’ difficulties with mathematical sense-making. International Journal of Science Education, 33(18), 2463–2488. https://doi.org/10.1080/09500693.2010.551551
  • Gupta, A., Elby, A., & Sawtelle, V. (2015). Bridging knowledge analysis and interaction analysis through understanding the dynamics of knowledge in use. In A. A. DiSessa, M. Levin, & N. J. S. Brown (Eds.), Knowledge and interaction: A synthetic agenda for the learning sciences (pp. 276–307). Routledge.
  • Hammer, D. (1994). Epistemological beliefs in introductory physics. Cognition and Instruction, 12(2), 151–183. https://doi.org/10.1207/s1532690xci1202_4
  • Hammer, D., Elby, A., Scherr, R., & Redish, E. F. (2005). Resources, framing, and transfer. In J. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 89–120). Information Age Publishing Inc.
  • Hammersley, M. (1992). What’s wrong with ethnography?: Methodological explorations. Routledge.
  • Hu, D., & Rebello, N. S. (2013a). Understanding student use of differentials in physics integration problems. Physical Review Special Topics-Physics Education Research, 9(2), 020108. https://doi.org/10.1103/PhysRevSTPER.9.020108
  • Hu, D., & Rebello, N. S. (2013b). Using conceptual blending to describe how students use mathematical integrals in physics. Physical Review Special Topics-Physics Education Research, 9(2), 020118. https://doi.org/10.1103/PhysRevSTPER.9.020118
  • Hunter, A., Laursen, S. L., & Seymour, E. (2007). Becoming a scientist: The role of undergraduate research in students’ cognitive, personal, and professional development. Science Education, 91(1), 36–74. https://doi.org/10.1002/sce.20173
  • Izsak, A. (2000). Inscribing the winch: Mechanisms by which students develop knowledge structures for representing the physical world with algebra. Journal of the Learning Sciences, 9(1), 31–74. https://doi.org/10.1207/s15327809jls0901_4
  • Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Harvard University Press.
  • Jones, S. R. (2013). Understanding the integral: Students’ symbolic forms. The Journal of Mathematical Behavior, 32(2), 122–141. https://doi.org/10.1016/j.jmathb.2012.12.004
  • Jorgensen, D. L. (2015). Participant observation. In Emerging trends in the social and behavioral sciences (pp. 1–15). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118900772.etrds0247
  • Kapon, S. (2015). Gestures, speech, and manipulation of objects as a window and interface to individual cognition. In A. A. DiSessa, M. Levin, & N. J. S. Brown (Eds.), Knowledge and interaction: A synthetic agenda for the learning sciences (pp. 236–251). Routledge.
  • Kapon, S. (2016). Doing research in school: Physics inquiry in the zone of proximal development. Journal of Research in Science Teaching, 53(8), 1172–1197. https://doi.org/10.1002/tea.21325
  • Kapon, S. (2017). Unpacking sensemaking. Science Education, 101(1), 165–198. https://doi.org/10.1002/sce.21248
  • Kapon, S., & Berland, L. K. (2023). Epistemic models of sensemaking and reasoning. In M. F. Taşar & P. R. L. Heron (Eds.), International handbook of physics education research, Volume 1: Learning Physics (pp. 12-1–12-22). AIP Publishing.
  • Kapon, S., Laherto, A., & Levrini, O. (2018). Disciplinary authenticity and personal relevance in school science. Science Education, 102(5), 1077–1106. https://doi.org/10.1002/sce.21458
  • Kapon, S., Schvartzer, M., & Peer, T. (2021). Forms of participation in an engineering maker‐based inquiry in physics. Journal of Research in Science Teaching, 58(2), 249–281. https://doi.org/10.1002/tea.21654
  • Karam, R. (2014). Framing the structural role of mathematics in physics lectures: A case study on electromagnetism. Physical Review Special Topics-Physics Education Research, 10(1), 10119.
  • Kintsch, W. (1974). The representation of meaning in memory. Lawrence Erlbaum Associates, Inc.
  • Kuo, E., Hull, M. M., Elby, A., & Gupta, A. (2020). Assessing mathematical sensemaking in physics through calculation-concept crossover. Physical Review Physics Education Research, 16(2), 20109. https://doi.org/10.1103/PhysRevPhysEducRes.16.020109
  • Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to Western thought. Basic Books.
  • Leron, U. (2003). Origins of mathematical thinking: A synthesis. In Proceedings CERME3 (pp. 1–8). Retrieved from http://www.dm.unipi.it/∼didattica/CERME3/proceedings/Groups/TG1/TG1_leron_cerme3.pdf
  • Leron, U., & Hazzan, O. (2009). Intuitive vs analytical thinking: four perspectives. Educational Studies in Mathematics, 71(3), 263–278. https://doi.org/10.1007/s10649-008-9175-8
  • Levin, M., & DiSessa, A. A. (2015). “Seeing” as complex, coordinated performance: A coordination class theory lens on disciplined perception. In A. A. DiSessa, M. Levin, & N. J. S. Brown (Eds.), Knowledge and interaction: A synthetic agenda for the learning sciences. Routledge.
  • Levrini, O., Fantini, P., Pecori, B., Tasquier, G., & Levin, M. (2015). Defining and operationalizing ‘appropriation’ for science learning. Journal of the Learning Sciences, 24(1), 93–136. https://doi.org/10.1080/10508406.2014.928215
  • Levrini, O., Levin, M., & Fantini, P. (2020). Fostering appropriation through designing for multiple access points to a multidimensional understanding of physics. Physical Review Physics Education Research, 16(2), 020154. https://doi.org/10.1103/PhysRevPhysEducRes.16.020154
  • Levrini, O., Levin, M., Fantini, P., & Tasquier, G. (2019). Orchestration of classroom discussions that foster appropriation. Science Education, 103(1), 206–235. https://doi.org/10.1002/sce.21475
  • Maxwell, J. C. (1990). The scientific letters and papers of James Clerk Maxwell (P. Harman, Ed.). Cambridge University Press.
  • Meltzer, D. E. (2005). Relation between students’ problem-solving performance and representational format. American Journal of Physics, 73(5), 463–478. https://doi.org/10.1119/1.1862636
  • Meredith, D. C., & Marrongelle, K. A. (2008). How students use mathematical resources in an electrostatics context. American Journal of Physics, 76(6), 570–578. https://doi.org/10.1119/1.2839558
  • Mullen, C. A. (2020). Practices of cognitive apprenticeship and peer mentorship in a cross‐global STEM lab. In B. J. Irby, J. N. Boswell, L. J. Searby, F. Kochan, R. Garza, & N. Abdelrahman (Eds.), The Wiley international handbook of mentoring: Paradigms, practices, programs, and possibilities (pp. 243–260). John Wiley & Sons, Inc.
  • Nathan, M. J. (2012). Rethinking formalisms in formal education. Educational Psychologist, 47(2), 125–148. https://doi.org/10.1080/00461520.2012.667063
  • Pearson, P. D., & Gallagher, M. C. (1983). The instruction of reading comprehension. Contemporary Educational Psychology, 8(3), 317–344. https://doi.org/10.1016/0361-476X(83)90019-X
  • Pepper, R. E., Chasteen, S. V., Pollock, S. J., & Perkins, K. K. (2012). Observations on student difficulties with mathematics in upper-division electricity and magnetism. Physical Review Special Topics-Physics Education Research, 8(1), 010111. https://doi.org/10.1103/PhysRevSTPER.8.010111
  • Pole, C. (2003). Ethnography for education. McGraw-Hill Education.
  • Rahm, J., Miller, H. C., Hartley, L., & Moore, J. C. (2003). The value of an emergent notion of authenticity: Examples from two student/teacher–scientist partnership programs. Journal of Research in Science Teaching, 40(8), 737–756. https://doi.org/10.1002/tea.10109
  • Redish, E. F., & Hammer, D. (2009). Reinventing college physics for biologists: Explicating an epistemological curriculum. American Journal of Physics, 77(7), 629–642. https://doi.org/10.1119/1.3119150
  • Reeves, S., Kuper, A., & Hodges, B. D. (2008). Qualitative research methodologies: Ethnography. BMJ, 337(3), a1020. https://doi.org/10.1136/bmj.a1020
  • Reich, M., Cohn, A., & Hochstatter, Y. (2009). “Aheret” Center – Multi-cultural researchers fellowship (title translated from Hebrew). Tehuda, The Journal of the Israeli Physics Teachers (Hebrew), 28(1–2), 53–62.
  • Richards, J., & Robertson, A. D. (2016). A review of research on responsive teaching in science and mathematics. In A. D. Robertson, R. E. Scherr, & D. Hammer (Eds.), Responsive teaching in science and mathematics (pp. 36–55). Routledge.
  • Robnett, R. D., Nelson, P. A., Zurbriggen, E. L., Crosby, F. J., & Chemers, M. M. (2018). Research mentoring and scientist identity: Insights from undergraduates and their mentors. International Journal of STEM Education, 5(1), 41. https://doi.org/10.1186/s40594-018-0139-y
  • Rogoff, B. (1995). Observing sociocultural activity on three planes: Participatory appropriation, guided participation, and apprenticeship. In J. V. Wertsch, P. del Rio, & A. Alvarez (Eds.), Sociocultural studies of mind (pp. 139–164). Cambridge University Press. Retrieved from https://people.ucsc.edu/∼brogoff/Scanned-articles/scanned 12-2008/Observing sociocult activity on 3 planes.pdf
  • Rogoff, B. (1997). Evaluating development in the process of participation: Theory, methods, and practice building on each other. In E. Amsel & A. Renninger (Eds.), Change and development (pp. 265–285). Erlbaum.
  • Russ, R. S., Scherr, R. E., Hammer, D., & Mikeska, J. (2008). Recognizing mechanistic reasoning in student scientific inquiry: A framework for discourse analysis developed from philosophy of science. Science Education, 92(3), 499–525. https://doi.org/10.1002/sce.20264
  • Sacks, H., Schegloff, E. A., & Jefferson, G. (1974). A simplest systematics for the organization of turn-taking for conversation. Language, 50(4), 696–735. https://doi.org/10.1353/lan.1974.0010
  • Sadler, T. D., Burgin, S., McKinney, L., & Ponjuan, L. (2010). Learning science through research apprenticeships: A critical review of the literature. Journal of Research in Science Teaching, 47(3), 235–256.
  • Sawtelle, V., & Turpen, C. (2016). Leveraging a relationship with biology to expand a relationship with physics. Physical Review Physics Education Research, 12(1), 010136. https://doi.org/10.1103/PhysRevPhysEducRes.12.010136
  • Saxe, G. B. (1991). Culture and cognitive development: Studies in mathematical understanding. Lawrence Erlbaum Associates, Inc.
  • Saxe, G. B., & de Kirby, K. (2014). Cultural context of cognitive development. Wiley Interdisciplinary Reviews. Cognitive Science, 5(4), 447–461. https://doi.org/10.1002/wcs.1300
  • Schunk, D. H., & Mullen, C. A. (2013). Toward a conceptual model of mentoring research: Integration with self-regulated learning. Educational Psychology Review, 25(3), 361–389. https://doi.org/10.1007/s10648-013-9233-3
  • Sherin, B. L. (2001a). How students understand physics equations. Cognition and Instruction, 19(4), 479–541. https://doi.org/10.1207/S1532690XCI1904_3
  • Sherin, B. L. (2001b). A comparison of programming languages and algebraic notation as expressive languages for physics. International Journal of Computers for Mathematical Learning, 6(1), 1–61. https://doi.org/10.1023/A:1011434026437
  • Shkedi, A. (2005). Multiple case narrative: A qualitative approach to studying multiple populations. John Benjamins Pub. Co.
  • Steiner, M. (1998). The applicability of mathematics as a philosophical problem. Harvard University Press.
  • Stevens, R., & Hall, R. (1998). Disciplined perception: Learning to see in technoscience. In M. Lampert & M. L. Blunk (Eds.), Talking mathematics in school: Studies of teaching and learning (pp. 107–149). Cambridge University Press.
  • Tenenbaum, H. R., Crosby, F. J., & Gliner, M. D. (2001). Mentoring relationships in graduate school. Journal of Vocational Behavior, 59(3), 326–341. https://doi.org/10.1006/jvbe.2001.1804
  • Tuminaro, J., & Redish, E. F. (2007). Elements of a cognitive model of physics problem solving: Epistemic games. Physical Review Special Topics-Physics Education Research, 3(2), 020101. https://doi.org/10.1103/PhysRevSTPER.3.020101
  • van Dijk, T. A. (1977). Semantic macro-structures and knowledge frames in discourse comprehension. In M. A. Just & P. A. Carpenter (Eds.), Cognitive processes in comprehension (pp. 3–32). Lawrence Erlbaum Associates.
  • Vygotsky, L. S. (1986). Thought and language. MIT Press.
  • Wenger, E., McDermott, R., & Snyder, W. M. (2002). Cultivating communities of practice. Harvard Business School Press.
  • Wertsch, J. V. (1984). The zone of proxiaml development: some conceptual issues. In B. Rogoff & J. V. Wertsch (Eds.), Children’s learning in the “zone of proximal development” (pp. 7–17). Jossey-Bass Inc Pub.
  • Wertsch, J. V. (1985). Vygotsky and the social formation of mind. Harvard University Press.
  • Wigner, E. P. (1960). The unreasonable effectiveness of mathematics in the natural sciences. Communications on Pure and Applied Mathematics, XIII, 1–14. Retrieved from http://links.uwaterloo.ca/amath731docs/wigner_unreasonable_effectiveness_1960.pdf
  • Wikipedia (n.d.). Dispersion (water waves). Retrieved May 9, 2019, from https://en.wikipedia.org/wiki/Dispersion_(water_waves)
  • Windschitl, M., Thompson, J. J., & Braaten, M. (2018). Ambitious science teaching. Harvard Education Press.
  • Zohar, A. R., Faraj, S., Cohn, A., & Kapon, S. (in preparation). Doing research in school: The interrelations between epistemic agency and epistemic affect.